

Math 1050 ~ College Algebra

$$
\begin{gathered}
-3 x+4 y=5 \\
2 x-y=-10 \\
{\left[\begin{array}{cc}
-3 & 4 \\
2 & -1
\end{array}\right]\left[\begin{array}{c}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
5 \\
-10
\end{array}\right]}
\end{gathered}
$$

$\sum_{k=1}^{m} k=\frac{m(m+1)}{2}$
$\sum_{k=0}^{n} z^{k}=\frac{1-z^{n+1}}{1-z}$

5 Inverses of Functions

Learning Objectives

- Verify that two functions are inverses of each other.
- Determine if a function is one-to-one.
- Use the graph of a one-to-one function to graph its inverse function.
- Find the inverse of a one-to-one function.

Inverse Function
If f and g are functions such that

- $(f \circ g)(x)=x$ for all x in the domain of g
- $(g \circ f)(x)=x$ for all x in the domain of f
then f and g are inverses of each other. (i.e. f and of "undo" This is written $f^{-1}(x)=g(x)$ and $g^{-1}(x)=f(x)$. each other)
read "f inverse of x "
note: the -1 is NoT an exponent.
To have an inverse, a function must be one-to-one, that is for each output there must be exactly one input.

is une-to-one

horizontal linetest: if every horizontal line crosses a function's graph only once (or zero times), then the function is one-to-one, ie. an inverse exists.

Finding an Inverse Function
Strategy given $y=f(x)$
(1) Swap x and y. $x=f(y)$
(2) Do legal algebra in order to Solve the equation for y interns of x.
(3) your answer will be $y=f^{-1}(x)$.

Ex 1: For $f(x)$, find the inverse function, $f^{-1}(x)$.
a) $f(x)=\frac{x^{5}-1}{3} \quad y=\frac{x^{5}-1}{3}$
b) $f(x)=\sqrt[3]{x+2}+1 \quad y=\sqrt[3]{x+2}+1$
(1) $x=\frac{y^{5}-1}{3}$
(2) $3 x=y^{5}-1$

$$
\begin{aligned}
& (3 x+1)^{\frac{1}{5}}=\left(y^{5}\right)^{1 / 5} \\
& \sqrt[5]{3 x+1}=y
\end{aligned}
$$

(3) $f^{-1}(x)=\sqrt[5]{3 x+1}$
(1) $x=\sqrt[3]{y+2}+1$
(2) $(x-1)^{3}=(\sqrt[3]{y+2})^{3}$

$$
\begin{aligned}
& (x-1)^{3}=y+2 \\
& (x-1)^{3}-2=y
\end{aligned}
$$

(3) $f^{-1}(x)=(x-1)^{3}-2$

Graphical Properties of Inverse Functions
Assume f and g are inverse functions.

- The domain of f is the range of g and the domain of g is the range of f.
- $f(a)=b$ if and only if $g(b)=a$.
- (a, b) is on the graph of f if and only if (b, a) is on the graph of g.
- f and g are symmetric about the line $y=x$.

$$
\begin{aligned}
& \text { on } f(x): \text { pt }(a, b) \\
& \text { on } f^{-1}(x): p+(b, a)
\end{aligned}
$$

i.e. the graph of $y=f(x)$
and $y=f^{-1}(x)$ are mirror images of each other across the line $y=x$.

Ex 2: Sketch the inverse, f^{-1}, of f on the same axes. State the domain and range of each.

Ex 3: Show that these two functions are inverses in two ways.

$$
g(x)=\frac{1-x}{x}, \quad 0<x \leq 1
$$

$f(x)=\frac{1}{1+x}, x \geq 0$ shift $g(x)=\frac{1}{x}-1$ shiftoml base: $y=\frac{1}{x} \quad$ (ft $(0,1)$ base: $y=\frac{1}{x}$
b) Graphically
a) Algebraically

Prove (2) $g(f(x))=x \quad(x \geq 0)$

$$
\text { and } f(g(x))=x \quad(0<x \leqslant 1) \text {. }
$$

(1)

$$
\begin{aligned}
& g(f(x))=g\left(\frac{1}{1+x}\right) \\
& =\left[\frac{1-\frac{1}{1+x}}{\frac{1}{1+x}}\right]\left(\frac{1+x}{1+x}\right) \\
& =\frac{1+x-1}{1}=1+x-1=x \quad .
\end{aligned}
$$

(2) $f(g(x))=f\left(\frac{1-x}{x}\right)$

Note: $\frac{1-x}{x}$

$$
\begin{aligned}
=\frac{1}{1+\left(\frac{1-x}{x}\right)} & =\frac{1}{x+\frac{1}{x}-x}=\frac{1}{1 / x} \\
& =x \quad
\end{aligned}
$$

$$
=\frac{1}{x}-\frac{x}{x}=\frac{1}{x}-1
$$

because $f(g(x))=x=g(f(x))$ (for x in their domains)
f and g are muerse frs.

Ex 4: Find the inverse of $f(x)=\frac{x-3}{x+2} . \quad y=\frac{x-3}{x+2}$
(1) $x=\frac{y-3}{y+2}$
(2)

$$
\begin{aligned}
& (y+2) x=\left(\frac{y-3}{y+2}\right)(y+2) \\
& x y+2 x=y-3 \\
& x y-y+2 x=-3 \\
& x y-y=-2 x-3 \\
& \frac{y(x-x)}{(x-1)}=\frac{-2 x-3}{(x-1)} \\
& \rightarrow y=\frac{-2 x-3}{x-1} \\
& \begin{array}{l}
\text { (3) } f^{-1}(x)=\frac{-2 x-3}{x-1} \\
D \\
\begin{array}{l|l|}
\hline(-\infty,-2) \cup & (-\infty, 1) \cup \\
(-2, \infty) & (1, \infty) \\
\hline(-\infty, 1) \cup & (-\infty,-2) 0 \\
(1, \infty) & (-2, \infty)
\end{array} f^{-1}(x)
\end{array}
\end{aligned}
$$

