

Binomial Expansion

The square and cube of a binomial are used so frequently, we may want to memorize them.

Ex 1: $(a+b)^2 = (a+b)^3 =$

Given these, it is possible to determine the square or cube of more complicated binomials.

Ex 2: $(x-2y)^2 = (3x+2y)^3 =$

Pascal's Triangle

 $(a+b)^{0} =$ $(a+b)^{1} =$ $(a+b)^{2} =$ $(a+b)^{3} =$ $(a+b)^{4} =$

Ex 3: Using the pattern above, expand these.

a) $(x-y)^5$ b) $(2x-3y)^4$

The Binomial Theorem

To get to this theorem, we need to introduce a new notation.

Factorial

The factorial of a non-negative integer is defined as:

0! = 1n! = 1(2)(3)...(n)

Ex 4: Evaluate the factorials of the integers 1 through 6.

Ex 5: Evalua	ate			
a) $\frac{5!}{3!}$	b) (8-5)!	c) (8-3)!	d) $\frac{17!}{14!}$	e) $\frac{100!}{96!4!}$

<u>The Binomial Coefficient</u> $\binom{n}{k}$ *n, k* are nonnegative integers $n \ge k$ $\binom{n}{k} = \frac{n!}{k!(n-k)!}$

Ex 6: Evaluate these binomial coefficients.

a)
$$\begin{pmatrix} 5\\0 \end{pmatrix}$$
 b) $\begin{pmatrix} 10\\6 \end{pmatrix}$ c) $\begin{pmatrix} 8\\3 \end{pmatrix}$ d) $\begin{pmatrix} 8\\5 \end{pmatrix}$ e) $\begin{pmatrix} 8\\8 \end{pmatrix}$

Ex 7: Show that
$$(a+b)^4 = \sum_{k=0}^4 \binom{4}{k} a^{4-k} b^k$$

The Binomial Theorem
$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

Ex 8: Use this theorem to expand $(3x-2)^5$.

Ex 9: Consider $(2x-y)^8$. Find the term that contains x^3 and the term that contains y^4 .