

Binomial Expansion

The square and cube of a binomial are used so frequently, we may want to memorize them.

Ex 1: $(a+b)^{2}=\quad(a+b)^{3}=$

Given these, it is possible to determine the square or cube of more complicated binomials.
Ex 2: $(x-2 y)^{2}=$

$$
(3 x+2 y)^{3}=
$$

Pascal's Triangle

$$
\begin{aligned}
& (a+b)^{0}= \\
& (a+b)^{1}= \\
& (a+b)^{2}= \\
& (a+b)^{3}= \\
& (a+b)^{4}=
\end{aligned}
$$

Ex 3: Using the pattern above, expand these.
a) $(x-y)^{5}$
b) $(2 x-3 y)^{4}$

The Binomial Theorem

To get to this theorem, we need to introduce a new notation.

Factorial

The factorial of a non-negative integer is defined as:

$$
\begin{aligned}
& 0!=1 \\
& n!=1(2)(3) \ldots(n)
\end{aligned}
$$

Ex 4: Evaluate the factorials of the integers 1 through 6.

Ex 5: Evaluate
a) $\frac{5!}{3!}$
b) $(8-5)$!
c) $(8-3)$!
d) $\frac{17!}{14!}$
e) $\frac{100!}{96!4!}$

The Binomial Coefficient $\binom{n}{k} \begin{aligned} & n, k \text { are nonnegative integers } \\ & n \geq k\end{aligned}$
$\binom{n}{k}=\frac{n!}{k!(n-k)!}$

Ex 6: Evaluate these binomial coefficients.
a) $\binom{5}{0}$
b) $\binom{10}{6}$
c) $\binom{8}{3}$
d) $\binom{8}{5}$
e) $\binom{8}{8}$

Ex 7: Show that $(a+b)^{4}=\sum_{k=0}^{4}\binom{4}{k} a^{4-k} b^{k}$

The Binomial Theorem $(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{n-k} b^{k}$

Ex 8: Use this theorem to expand $(3 x-2)^{5}$.

Ex 9: Consider $(2 x-y)^{8}$. Find the term that contains x^{3} and the term that contains y^{4}.

