

Math 1050 ~ College Algebra

$$
\begin{aligned}
& -3 x+4 y=5 \\
& 2 x-y=-10
\end{aligned}
$$

28 Sequences

Learning Objectives

- Identify number patterns.
$\sum_{k=1}^{m} k=\frac{m(m+1)}{2}$
- Recognize and use recursive and explicit formulas for sequences.
- Graph sequences.
- Identify arithmetic and geometric sequences.
- Find formulas for arithmetic and geometric sequences.

Number Patterns
An ordered collection of numbers or events is called a sequence. There are many interesting numeric sequences. If it goes on indefinitely, it is called an infinite sequence.

Ex 1: For each sequence, determine how to find the next term and state two more terms.
a) $\underbrace{2,4,8, \ldots}$ next terms: 16,32 (this sequence is powers of 2)

c) $2,4,16, \ldots$ next terms: $16^{2},\left(16^{2}\right)^{2}$

$$
4=2^{2}, 16=4^{2} \quad \text { or } 256,65536
$$

d) 19, 11, 3, -5, -13, ... next terms: -21,-29

$$
\underset{-8-8-8-8}{\sim}
$$

e) $16,-8,4,-2, \ldots$ next terms: 1, $\frac{-1}{2}$

$$
x_{x-\frac{1}{2}}^{x-\frac{1}{2}} x_{x-\frac{1}{2}}
$$

f) $1,1,2,3,5,8, \ldots$ next terms: 13, 21
(Fibonacci sequence)
g) $27,18,12,8, \ldots$ next terms: $\frac{16}{3}, \frac{32}{9}$

A recursive formula defines each new term by one or more of the previous terms. $a_{1} a_{2} a_{3} a_{4} a_{5} a_{6}$
$1,1,2,3,5,8, \ldots$
to get to next term,
n is a counter (input variable)
a_{n} is the $n^{\text {th }}$ term of the sequence
we add 2 previous terms $a_{n}=a_{n-1}+a_{n-2}, a_{1}=1, a_{2}=1$
$a_{0}: a_{s} a_{y}+a_{3}$
rubes how to find any term of the sequence.

$a_{1} a_{2} a_{3}$
$2,4,8, \ldots$
each term is 2 to

$$
a_{n}=2^{n}, n=1,2,3, \ldots
$$

a power
ax what is a_{90} ? $a_{n 00}=2^{100}$
Ex 2: Write five terms for each sequence. Identify as recursive or explicit.

$$
\begin{aligned}
& \text { explicit (assume } \\
& \text { a) } \left.a_{n}=(-1)^{n}\left(\frac{n}{n+1}\right)^{n} \begin{array}{c}
n \text { starts } \\
\text { at 1 }
\end{array}\right) \\
& a_{1}=-\left(\frac{1}{2}\right)^{1}=\frac{-1}{2} \quad a_{3}=-\left(\frac{3}{4}\right)^{3}=\frac{-27}{64} \\
& a_{2}=\left(\frac{2}{3}\right)^{2}=\frac{4^{2}}{9} \quad a_{4}=\left(\frac{1}{5}\right)^{4} \\
& a_{5}=-\left(\frac{5}{6}\right)^{5} \\
& \text { recursive } \\
& \text { b) } a_{n}=\frac{1}{a_{n-1}}, a_{\mathbf{1}}=\mathbf{1} \\
& a_{1}=1 \quad \text { what if } a_{1}=2 \text { ? } \\
& a_{2}=\frac{1}{2} \\
& \begin{array}{l}
a_{3}=\frac{1}{1 / 2}=2 \\
a_{1}=\frac{1}{2} \\
a_{5}=2
\end{array} \\
& a c=2 \\
& \text { Ex 3: Write an explicit and a recursive formula for this sequence. }
\end{aligned}
$$

$2,-4,6,-8, \ldots$
let's work with sequence $2,4,6,8, \ldots$ first.
recursive: $a_{n}=a_{n-1}+2, a_{1}=2$
explicit: $\quad a_{n}=2 n \quad n=1,2,3, \ldots$
\(\begin{array}{ll}recursive: \& a_{n}=(-1)^{n+1}\left(\left|a_{n-1}\right|+2\right), a_{1}=2

explicit: \& a_{n}=(-1)^{n+1}(2 n)\end{array}\)| n | a_{n} |
| :--- | :--- |
| 1 | 2 |
| 2 | -4 |
| $\frac{3}{6}$ | |
| $\frac{4}{6}-8$ | |

A sequence is a function with the domain of all natural numbers or a consecutive subset of the natural numbers.

Here are different ways to describe odd natural numbers as a sequence. Note that the fourth option allows us to have a finite sequence or one beginning with 0 .
(1)

$$
f(n)=2 n-1, n=1,2,3, \ldots
$$

$$
a_{n}=2 n-1, n=1,2,3, \ldots
$$

$$
f(1)=2(1)-1=1, f(2)=3, f(3)=5, \ldots
$$

$$
\{2 n-1\}_{n-1}^{\infty}
$$

$$
\{2 n-1\}
$$

Since a sequence is a function, we can graph it. Note that the graph will be points, not connected with a curve.
Ex 4: Write five terms of each sequence and plot each on the graph.

Arithmetic Sequence
$\left\{a_{n}\right\}$ is an arithmetic sequence if successive terms have the same difference.
recursive formula
$a_{n}=a_{n-1}+d$ with a_{1} given
explicit/drect $\quad a_{n}=a_{1}+(n-1) d$
d constant
formula
Ex 4: Which of these sequences are arithmetic? For those that are, find d and a_{20}. (assume n starts at 1)
a) $5.3,5.7,6.1,6.5,6.9, \ldots$
(aside: $2,5,8,11, \ldots$ arith. seq.)

$$
+0.4^{+} \overrightarrow{0.4}+04+0.4
$$

$d=0.4$
$a_{n}=5.3+(n-1)(0.4)$
$a_{20}=5.3+19(0.4)=12.9$
c) $800,400,200,100,50, \ldots$
given seq is NoT anthmetie
$x_{1}^{2} x_{x}^{2} \rightarrow x_{\frac{1}{2}} \times \frac{1}{2}$
d) $\frac{19}{2}, \frac{11}{2}, \frac{3}{2},-\frac{5}{2},-\frac{13}{2}, \ldots$

NOT arithmetic
(aside: just numerators $19,11,3,-5,-13, \ldots$ is arith. seq.
iginal sea. is $d=-8$)
original seq is also arithmetic

$$
d=-4, \quad a_{n}=\frac{19}{2}+(n-1)(-4) \Rightarrow a_{20}=\frac{11}{2}+A(-4)
$$

Ex 5: Find an explicit formula for a_{n}, such that $\left\{a_{n}\right\}$ is arithmetic and $a_{1}=0, d=-2 / 3$. Write the first five terms.

$$
\begin{aligned}
& a_{n}=a_{1}+(n-1) d \\
& a_{n}=0+(n-1)\left(-\frac{2}{3}\right) \\
& a_{n}=\frac{2}{3}-\frac{2}{3} n
\end{aligned}
$$

n	a_{n}
1	0
2	$\frac{-2}{3}$
3	$-4 / 3$
4	$-\frac{93}{3}-2$
5	$-4 / 8$

$$
0,-\frac{2}{3},-\frac{4}{3},-2,-\frac{8}{3}, \ldots
$$

Ex 6: Find an explicit formula for the arithmetic sequence such that $a_{2}=3$ and $a_{7}=33$.
way 1 $a_{n}=a_{1}+(n-1) d$
(1) $3=a_{1}+(2-1) d$
$3=a_{1}+d$
(2) $33=a_{1}+(7-1) d$

$$
33=a_{1}+6 d
$$

way 2 33-3e30 $q_{2}=-46$

$$
\frac{30}{5 \text { jumps }}=6=d
$$

use substitution:
(1) $a_{1}=3-d$

$$
a_{n}=-3+(n-1) 6
$$

$$
\begin{aligned}
d=6 \Rightarrow a_{1} & =a_{2}-6 \\
a_{1} & =3-6=-3
\end{aligned}
$$

\Rightarrow (2) $33=(3-d)+6 d$

$$
\begin{aligned}
& 33=(3-d)+6 d \\
& 30=5 d \\
& d=6 \Rightarrow a_{1}=3-6=-3
\end{aligned}
$$

Geometric Sequence
$\left\{a_{n}\right\}$ is a geometric sequence if successive terms have the same quotient (ratio).
$a_{n}=a_{n-1} r$ with a_{1} given
recursive formula
explicit
formula

$$
a_{n}=a_{1}\left(r^{n-1}\right)
$$

Ex 7: Which of these are geometric? If they are, determine r and find a_{10}.
a) $\frac{1}{5}, \frac{2}{7}, \frac{3}{9}, \frac{4}{11}, \ldots$
b) $\frac{19}{2}, \frac{11}{2}, \frac{3}{2},-\frac{5}{2},-\frac{13}{2}, \ldots$

NOT geom.
(also not arithmetic)
c) $800, \underbrace{400}_{x \frac{1}{2}} \underbrace{200}_{x \frac{1}{2}} \underbrace{100}_{x \frac{1}{2}}, \underbrace{50}_{\frac{1}{2}}, \ldots$

NOT geometric.
(it's arithmetic instead)
d) $9,-6,4,-\frac{8}{3}, \ldots$

IS geometric, $r=\frac{1}{2}$

$$
\begin{aligned}
& a_{n}=800\left(\frac{1}{2}\right)^{n-1} \Rightarrow a_{10}=800\left(\frac{1}{2}\right)^{9}=\frac{25}{16} \\
& \text { Ex } 8 \text { : Write the firsts six terms of the geometric s. }
\end{aligned}
$$

$$
\begin{aligned}
& a_{n}=9\left(-\frac{2}{3}\right)^{n-5} \\
& a_{n}=9\left(-\frac{2}{3}\right)^{9}=-\frac{12}{2167}
\end{aligned}
$$

Ex 8: Write the first six terms of the geometric sequence with $a_{1}=6, r=-\frac{1}{4}$.

$$
6,-\frac{3}{2}, \frac{3}{8}, \frac{-3}{32}, \frac{3}{128}, \frac{-3}{512}, \ldots
$$

Ex 9: If $a_{2}=3$ and $\mathrm{a}_{5}=\frac{3}{64}$ and $\left\{a_{n}\right\}$ is geometric, find a_{1}, a_{7} and a formula for a_{n}.

$$
\begin{aligned}
& \text { 12, 3, } \\
& 3\left(r^{3}\right)=\frac{3}{64} \quad a_{1}\left(\frac{1}{4}\right)=3, a_{n}=12\left(\frac{1}{4}\right)^{n-1} \\
& r^{3}=\frac{1}{64} \\
& r=\frac{1}{4}
\end{aligned}
$$

Ex 10: Identify each sequence from example 1 as geometric, arithmetic or neither and state a reason.
a) ${\underset{x 2}{2,4} 4,8, \ldots}_{x}^{2} \quad$ geometric $(r=2)$
b) $\frac{2}{9}, \frac{3}{8}, \frac{4}{7}, \frac{5}{6}, \ldots$ no common difference between terms and no common ratio \Rightarrow neither
c) $2,4,16, \ldots$ neither
d) ${\underset{-8}{-8}, \underset{-8}{19}, \underbrace{11,3,-5,-13}_{-8-8}, \ldots \text { arithmetic }(~}_{, ~=~}^{3}=-8)$
e) $\underbrace{16,-8,4,-2, \ldots}_{x=\frac{1}{2} \times \frac{1}{2}}$ geometric $\left(r=\frac{-1}{2}\right)$
f) $1,1,2,3,5,8, \ldots$ (Fibonacci) neither
g) $27,18,12,8, \ldots$ geometric ($r=\frac{2}{3}$)

