

Math 1050 ~ College Algebra

$$
\begin{gathered}
-3 x+4 y=5 \\
2 x-y=-10 \\
{\left[\begin{array}{cc}
-3 & 4 \\
2 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
5 \\
-10
\end{array}\right]}
\end{gathered}
$$

27 Partial Fractions

Learning Objectives

$\sum_{k=1}^{m} k=\frac{m(m+1)}{2}$
$\sum_{k=0}^{n} z^{k}=\frac{1-z^{n+1}}{1-z}$

- Decompose a rational expression with denominator of non-repeated linear factors into a sum of partial fractions.
- Decompose a rational expression with denominator of repeated linear factors into a sum of partial fractions.
- Decompose a rational expression with denominator of non-repeated irreducible quadratic factors into a sum of partial fractions.
- Decompose a rational expression with denominator of repeated irreducible quadratic factors into a sum of partial fractions.

Partial Fraction Decomposition proper rational expression:
Distinct Linear Factors degree of numerator $<$ degree of denominator
There are times, in future math classes, when you would like to break a rational expression into a sum of simpler fractions. We will begin with a proper fraction, where the degree of the numerator is less than the degree of the denominator. The first step is to factor the denominator and write it as a sum of n terms for an $n^{\text {th }}$ degree denominator.

$$
\frac{p(x)}{q(x)}=\frac{A}{a_{1} x+b_{1}}+\frac{B}{a_{2} x+b_{2}}+\frac{C}{a_{3} x+b_{3}}+\cdots
$$

Ex 1: Determine A and B for this proper fraction. $\frac{3 x-1}{x(x-4)}=\frac{A}{x}+\frac{B}{(x-4)} A_{1} B$ contorts

$$
\begin{array}{ll}
\frac{3 x-1}{x(x-4)}=\frac{A}{x}+\frac{B}{x-4} \\
x(x-4) \frac{(3 x-1)}{x(x-4)}=\frac{A}{x} \times(x-4)+\left(\frac{B}{x-4)} x(x-4)\right. & \quad 2 \text { factors in denominator } \\
3 x-1=A(x-4)+B x & \text { decompose into } 2 \text { fractions }
\end{array}
$$

note: this is true for all x which means we can choose
Goal: Solve for A and B.

$$
\begin{aligned}
0 x=0: \quad-1 & -A(-4) \\
A & =\frac{1}{4}
\end{aligned}
$$

(2) $x=4$:

If the fraction is improper, we must do long division first.
Ex 2: Write the partial fraction decomposition for this expression. $\frac{x^{2}+1}{x^{2}-x}$ hoke:. the degree of $x^{2}+1=$ degree of $x^{2}-x$
\Rightarrow do long division first.

$$
\begin{aligned}
& \begin{array}{l}
\frac{1}{x^{2}-x \sqrt{x^{2}+1}} \left\lvert\, \frac{x^{2}+1}{x^{2}-x}=1+\underbrace{\frac{x+1}{x^{2}-x}}_{\text {proper lati }}\right. \\
\text { do PFD on } \frac{x+1}{x^{2}-x}=\frac{x+1}{x(x-1)}=\frac{A}{x}+\frac{B}{x-1}
\end{array} \\
& \frac{x+1}{x(x-1)}=\frac{A}{x}+\frac{B}{x-1} \\
& x(x-1)(x+1)=\frac{A}{x(x-1)} x(x-1)+\frac{B}{x-1} x(x-1) \\
& x+1=A(x-1)+B x \text { true for all } x \text {; solve for } \\
& \begin{aligned}
& \text { (1) } \\
& \quad 1=-A+0 \quad(2) x=1: \quad \begin{array}{l}
A \text { and } \\
A=-1 \\
\\
B=2
\end{array}
\end{aligned} \\
& \frac{x^{2}+1}{x^{2}-x}=1+\frac{x+1}{x(x-1)}=1+\frac{-1}{x}+\frac{2}{x-1}
\end{aligned}
$$

Repeated Linear Factors

$$
\frac{p(x)}{q(x)}=\frac{A}{a x+b}+\frac{B}{(a x+b)^{2}}+\frac{C}{(a x+b)^{3}}+\cdots+\frac{N}{(a x+b)^{n}}
$$

Ex 3: Resolve into partial fractions $\frac{2 x^{2}+7 x+4}{(x+1)^{3}}$ a arrack. is our of ration al

$$
\begin{aligned}
& \text { Ex 3: Resolve into partial fractions } \frac{2 x^{2}+7 x+4}{(x+1)^{3}} \text {. proper ration? Yes. } \\
& (x+1)^{3} \frac{2 x^{2}+7 x+4}{(x+1)^{3}}=\left[\frac{A}{x+1}+\frac{B}{(x+1)^{2}}+\frac{C}{(x+1)^{3}}\right](x+1)^{3}
\end{aligned}
$$

$$
2 x^{2}+7 x+4=A(x+1)^{2}+B(x+1)+C
$$

note: true for all x; Solve for $A, B \perp C$ (not x).
(choose any xvalues)
(1) $x=-1$:

$$
\begin{aligned}
2(1)+7(-1)+4 & =0+0+c \\
-1 & =c
\end{aligned}
$$

$$
4=A+B+(-1) \leftrightarrow A+B=5
$$

(3) $x=1$:

$$
\begin{aligned}
2+7+4=A(4)+B(2)+(-1) \leftrightarrow 14 & =4 A+2 B \\
7 & =2 A+B
\end{aligned}
$$

$$
\begin{aligned}
\text { (2) } B=5-A & \text { (3) } 7 \\
= & 2 A+5-A \\
7 & =5+A \\
A & =2
\end{aligned} \Rightarrow B=5-2 \Leftrightarrow B=3
$$

Unique Irreducible Quadratic Factors

$$
\frac{p(x)}{q(x)}=\frac{A x+B}{a_{1} x^{2}+b_{1} x+c_{1}}+\frac{C x+D}{a_{2} x^{2}+b_{2} x+c_{2}}+\cdots
$$

irreducible: cannot be factored (ω) R factors)

Ex 4: Write the partial fraction decomposition of $\frac{-x^{3}+4 x^{2}-2 x+6}{x^{2}\left(x^{2}+2\right)}$.
check: is this a proper rational expression? Yes
$\operatorname{deg}($ numb $)=3, \operatorname{deg}(d \operatorname{len})=4 \quad 3<4$
\Rightarrow do Nor need to do long derision.
(1) $x=0$:

$$
6=0+2 B+0
$$

(2) $x=1$:

$$
B=3
$$

$$
\begin{aligned}
-1+4-2+6 & =A(3)+3(3)+(C+D) \\
7 & =3 A+9+C+D
\end{aligned}
$$

(3) $x-1$:

$$
\begin{aligned}
1+4+2+6 & =-A(3)+3(3)+(-C+D) \\
13 & =-3 A+9-C+D \Leftrightarrow 4
\end{aligned}
$$

add (2) $\&$ (3)

$$
\begin{aligned}
-2 & =3 A+C+D \\
+4 & =-3 A-C+D \\
\hline 2 & =2 D \Leftrightarrow D=1
\end{aligned}
$$

(2) $-3=3 A+C$
(3) $3=-3 A-C$ use substitution now: $C=-3-3 A$
(4)

$$
\begin{aligned}
x=2: \quad-2^{3}+4\left(2^{2}\right)-2(2)+6=A(2)\left(2^{2}+2\right)+3\left(2^{2}+2\right) \\
-8+16-4+6=12 A+18+8 C+4 \\
10=12 A+8 C+22 \\
-12=12 A+8 C \Leftrightarrow-3=3 A+2 C
\end{aligned}
$$

from (2) $\quad-3=3 A+2(-3-3 A)$

$$
-3=3 A-6-6 A
$$

$$
\begin{aligned}
3=-3 A \\
A=-1
\end{aligned} \quad \Rightarrow C=-3-3(-1) \quad \begin{aligned}
& B=3 \\
& C=0
\end{aligned} \quad \begin{aligned}
& P=1
\end{aligned}
$$

$$
\Rightarrow \frac{-x^{3}+4 x^{2}-2 x+6}{x^{2}\left(x^{2}+2\right)}=\frac{-1}{x}+\frac{3}{x^{2}}+\frac{1}{x^{2}+2}
$$

$$
\begin{aligned}
& \frac{-x^{3}+4 x^{2}-2 x+6}{x^{2}\left(x^{2}+2\right)}=\frac{A}{x}+\frac{B}{x^{2}}+\frac{C x+D}{x^{2}+2} \\
& \begin{aligned}
& x^{2}\left(x^{2}+6\right)\left(-x^{3}+4 x^{2}-2 x+6\right) \\
& x^{2}\left(x^{2}+2\right)=\frac{A}{x} x\left(x^{2}+2\right)+\frac{B}{x^{2}} x^{2}\left(x^{2}+2\right)
\end{aligned} \begin{array}{l}
\Rightarrow x^{2} \text { is related } \\
\text { linear factor. } \\
+\frac{((x+D)}{x^{2}+2} x^{2}\left(x^{2}+2\right)
\end{array} \\
& -x^{3}+4 x^{2}-2 x+6=A x\left(x^{2}+2\right)+B\left(x^{2}+2\right)+\left((x+D) x^{2}\right. \\
& \text { no: think of } \\
& x \text { as }(x-0) \text {. } \\
& \Rightarrow x^{2} \text { is repeated }
\end{aligned}
$$

Repeated Irreducible Quadratic Factors
$\frac{p(x)}{q(x)}=\frac{A_{1} x+B_{1}}{a x^{2}+b x+c}+\frac{A_{2} x+B_{2}}{\left(a x^{2}+b x+c\right)^{2}}+\frac{A_{3} x+B_{3}}{\left(a x^{2}+b x+c\right)^{3}}+\cdots+\frac{A_{n} x+B_{n}}{\left(a x^{2}+b x+c\right)^{n}}$
Ex 4: Write the partial fraction decomposition of $\frac{x^{2}+x+2}{\left(x^{2}+2\right)^{2}}$.
check $\operatorname{deg}($ mum $)=2, \operatorname{deg}($ den $)=4,2<4$
\Rightarrow do NoT need to do long division.

$$
\begin{aligned}
& \left(x^{2}+2\right)^{2} \frac{x^{2}+x+2}{\left(x^{2}+2\right)^{2}}=\left[\frac{A x+B}{x^{2}+2}+\frac{C x+D}{\left(x^{2}+2\right)^{2}}\right]\left(x^{2}+2\right)^{2} \\
& x^{2}+x+2=(A x+B)\left(x^{2}+2\right)+(C x+B) \\
& \text { (1) } x=0 \text { : } \\
& 2=B(2)+D \Leftrightarrow 2=2 B+D \\
& \text { (2) } x=1 \text { : } \\
& 1+1+2=(A+B)(3)+(C+D) \\
& 4=3 A+3 B+C+D \\
& \text { (3) } x=-1: \quad 1+-1+2=(-A+B)(3)+(-C+D) \\
& 2=-3 A+3 B-C+D \\
& \text { (4) } x=2 \text { : } \\
& 4+2+2=(2 A+B)(4+2)+(2 C+D) \\
& 8=12 A+6 B+2 C+D
\end{aligned}
$$

So we have 4 egns and 4 unknowns
(1) $2 B+D=2$
(2) $3 A+3 B+C+D=4$
(3) $-3 A+3 B-C+D=2$
(4) $12 A+6 B+2 C+D=8$

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
0 & 2 & 0 & 1 \\
3 & 3 & 1 & 1 \\
-3 & 3 & -1 & 1 \\
12 & 6 & 2 & 1
\end{array} \quad=P \quad \operatorname{Cocefficient~matrix)}\right.} \\
& A=\frac{1}{12}\left|\begin{array}{cccc}
2 & 2 & 0 & 1 \\
4 & 3 & 1 & 1 \\
2 & 3 & -1 & 1 \\
8 & 6 & 2 & 1
\end{array}\right|=\frac{1}{12}(D)=0 \quad B=\frac{1}{12}\left|\begin{array}{cccc}
0 & 2 & 0 & 1 \\
3 & 4 & 1 & 1 \\
-3 & 2 & -1 & 1 \\
12 & 8 & 2 & 1
\end{array}\right|=1=\frac{1}{12}(12) \\
& C=\frac{1}{12}\left|\begin{array}{cccc}
0 & 2 & 2 & 1 \\
3 & 3 & 4 & 1 \\
-3 & 3 & 2 & 1 \\
12 & 6 & 8 & 1
\end{array}\right|=\frac{1}{12}(12) \quad D=1 \quad\left|\begin{array}{cccc}
0 & 2 & 0 & 2 \\
3 & 3 & 1 & 4 \\
-3 & 3 & -1 & 2 \\
12 & 6 & 2 & 8
\end{array}\right|=0
\end{aligned}
$$

