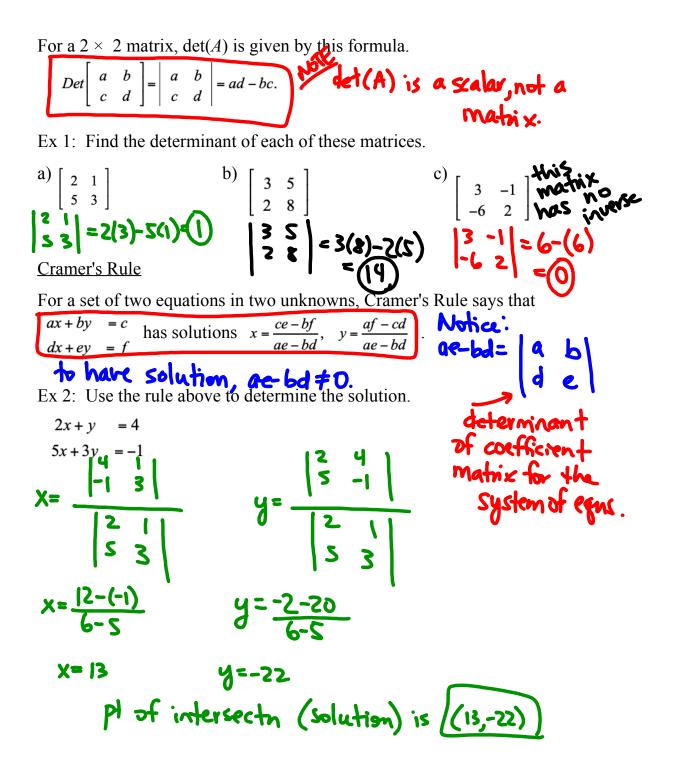


Determinant of a Matrix

Every square matrix has a number associated with it, called the determinant of A. It may be written det(A) or |A|.



Determinant of a 3×3 matrix is more complex.

$$A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \Rightarrow \det(A) = |A| = a \begin{vmatrix} e & f \\ h & i \end{vmatrix} - b \begin{vmatrix} d & f \\ g & i \end{vmatrix} + c \begin{vmatrix} d & e \\ g & h \end{vmatrix}$$

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$
Subscripts on a feel the location of that element in the matrix, with row first and column second

Given the square $n \times n$ matrix A where n > 1, and a_{ij} represents the entry in the *i*th row and *j*th column:

- the minor, M_{ij} of the entry a_{ij} is the determinant of the $(n-1)\times(n-1)$ matrix left after deleting row *i* and column *j* from the matrix *A*.
- the cofactor, C_{ij} of entry a_{ij} is $C_{ij} = (-1)^{i+j} M_{ij}$.

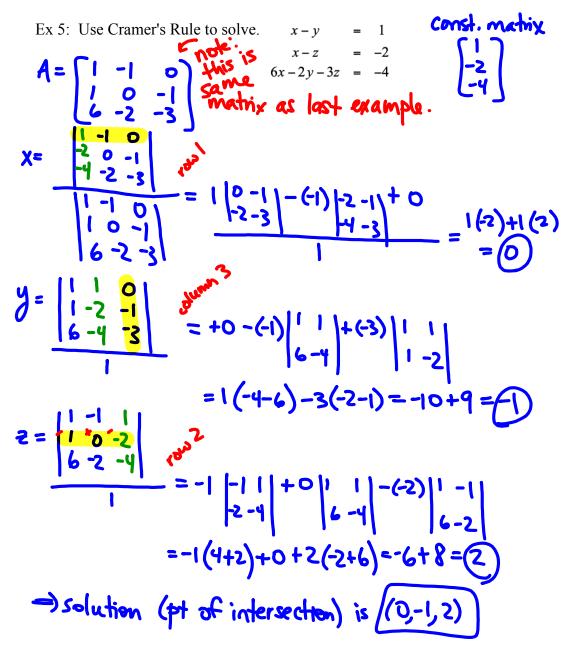
Ex 3: Find all
$$M_{ij}$$
 and C_{ij} for this matrix. $A = \begin{bmatrix} 1 & -1 & 0 \\ 1 & 0 & -1 \\ 6 & -2 & -3 \end{bmatrix}$
 $\mathbf{M}_{\mathbf{n}} = \begin{bmatrix} \mathbf{D} - 1 \\ -2 & -3 \end{bmatrix} = \mathbf{D} - (2) = -2$
 $\mathbf{M}_{\mathbf{2}1} = \begin{bmatrix} -1 & 0 \\ -2 & -3 \end{bmatrix} = 3 - 0 = -3$
 $\mathbf{M}_{\mathbf{2}2} = \begin{bmatrix} 1 & 0 \\ 6 & -3 \end{bmatrix} = -3 - 0 = -3$
 $\mathbf{M}_{\mathbf{2}2} = \begin{bmatrix} 1 & 0 \\ 6 & -3 \end{bmatrix} = -3 - 0 = -3$
 $\mathbf{M}_{\mathbf{2}3} = \begin{bmatrix} 1 & 0 \\ 6 & -2 \end{bmatrix} = -2 - (6) = 4$
 $\mathbf{M}_{\mathbf{3}1} = \begin{bmatrix} -1 & 0 \\ 6 & -2 \end{bmatrix} = 1$
 $\mathbf{M}_{\mathbf{3}2} = \begin{bmatrix} 1 & 0 \\ 6 & -2 \end{bmatrix} = -1$
 $\mathbf{M}_{\mathbf{3}3} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = 1$
 $\mathbf{M}_{\mathbf{3}2} = \begin{bmatrix} 1 & 0 \\ 1 & -1 \end{bmatrix} = -1$
 $\mathbf{M}_{\mathbf{3}3} = \begin{bmatrix} 1 & -1 \\ 0 & -1 \end{bmatrix} = 1$
 $C_{\mathbf{1}1}(-1)^{2}(-2) = -2$, $C_{\mathbf{1}2} = (+1)^{3}(3) = -3$, $C_{\mathbf{1}3} = (-1)^{4}(-2) = -2$
 $C_{\mathbf{2}1} = (-1)^{3}(3) = -3$, $C_{\mathbf{2}2} = (-1)^{4}(-3) = -3$, $C_{\mathbf{2}3} = (-1)^{4}(-3) = -4$
 $C_{\mathbf{3}1} = (-1)^{4}(-1) = 1$, $C_{\mathbf{3}2} = (-1)^{5}(-1) = 1$, $C_{\mathbf{3}3} = (-1)^{5}(-1) = 1$

The determinant of an $n \times n$ matrix, where n > 1, is the sum of the entries in any row or column multiplied by each entry's respective cofactor.

Ex 4: Find the determinant of
$$A = \begin{bmatrix} 1 & -1 & 0 \\ 1 & 0 & -1 \\ 6 & -2 & -3 \end{bmatrix}$$
.
 $|A| = 1 \begin{vmatrix} 0 & -1 \end{vmatrix} - (-1) \begin{vmatrix} 1 & -1 \\ 6 & -3 \end{vmatrix}$
 $|A| = 1 \begin{vmatrix} 0 & -1 \end{vmatrix} - (-1) \begin{vmatrix} 1 & -1 \\ 6 & -3 \end{vmatrix}$
 $|A| = 1 \begin{vmatrix} 0 & -1 \\ -2 & -3 \end{vmatrix} \begin{vmatrix} 1 & -1 \\ 6 & -3 \end{vmatrix}$
 $|A| = 1 \begin{vmatrix} 0 & -1 \\ -2 & -3 \end{vmatrix} \begin{vmatrix} 0 & -1 \\ 6 & -3 \end{vmatrix}$
 $|A| = 1 \begin{pmatrix} -1 & -1 \\ 0 & -3 \end{vmatrix} \begin{vmatrix} 0 & 0 \\ 6 & -3 \end{vmatrix}$
 $|A| = 1 \begin{pmatrix} -1 & -1 \\ 0 & 0 \\ 6 & -3 \end{vmatrix}$
 $|A| = 1 \begin{pmatrix} -1 & -1 \\ 0 & 0 \\ 6 & -3 \end{vmatrix}$
 $|A| = 1 \begin{pmatrix} -1 & -1 \\ 0 & 0 \\ 6 & -3 \end{vmatrix}$
 $|A| = 1 \begin{pmatrix} -1 & -1 \\ 0 & 0 \\ 6 & -3 \end{vmatrix}$
 $|A| = 1 \begin{pmatrix} -1 & -1 \\ 0 & 0 \\ 6 & -3 \end{vmatrix}$
 $|A| = 1 \begin{pmatrix} -1 & -1 \\ 0 & 0 \\ 6 & -3 \end{vmatrix}$
 $|A| = 1 \begin{pmatrix} -1 & -1 \\ 0 & 0 \\ 6 & -3 \end{vmatrix}$
 $|A| = 1 \begin{pmatrix} -1 & -1 \\ 0 & 0 \\ 1 & -1 \\ 1 & -1 \end{pmatrix}$
 $= 1 \begin{pmatrix} -3 & -(-5) \end{pmatrix} + 0 \begin{pmatrix} -3 & -0 \end{pmatrix} + 2 \begin{pmatrix} -1 & -0 \\ -3 & -2 \end{pmatrix}$
 $= 1 \begin{pmatrix} -3 & -(-5) \end{pmatrix} + 0 \begin{pmatrix} -3 & -0 \end{pmatrix} + 2 \begin{pmatrix} -3 & -0 \\ -3 & -2 \end{pmatrix}$
 $= 1 \begin{pmatrix} -3 & -(-5) \end{pmatrix} + 0 \begin{pmatrix} -3 & -0 \end{pmatrix} + 2 \begin{pmatrix} -1 & -0 \\ -3 & -2 \end{pmatrix}$
 $= 3 + 0 + -2 = 1$

To use Cramer's Rule to solve a set of 3 equations, let $D = \det A$. D_x is found by replacing the first column of A by the constants. D_y is found by replacing the second column of A by the constants, and D_z is found by replacing the third column of A by the constants.

$$x = \frac{D_x}{D}, \quad y = \frac{D_y}{D}, \quad z = \frac{D_z}{D}$$



5