

$$
\begin{gathered}
-3 x+4 y=5 \\
2 x-y=-10 \\
{\left[\begin{array}{cc}
-3 & 4 \\
2 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
5 \\
-10
\end{array}\right]}
\end{gathered}
$$

$$
\begin{aligned}
& \sum_{k=1}^{m} k=\frac{m(m+1)}{2} \\
& \sum_{k=0}^{n} z^{k}=\frac{1-z^{n+1}}{1-z}
\end{aligned}
$$

Math 1050 ~ College Algebra

25 Systems of Linear Equations: Matrix Inverses

Learning Objectives

Find the inverse of a 2×2 or a 3×3 matrix.

- Solve a system of linear equations using an inverse matrix.

Inverse Matrix

If A and B are square matrices, $n \times n$, such that $A B=B A=I_{n}$, then B is the inverse matrix of A and can be denoted as A^{-1}. read as "A inverse" (-1 is NOT
Ex 1: Show that B is $A^{-1} . \quad A=\left[\begin{array}{ll}2 & 1 \\ 5 & 3\end{array}\right] \quad B=\left[\begin{array}{cc}3 & -1 \\ -5 & 2\end{array}\right]$
an exponent)

Process for finding an inverse matrix. (for a square matrix)

1. Augment A with I.
2. Perform row operations until the left side looks like I.
3. The right side will be A^{-1}.

Ex 2: Determine the inverse of each matrix, if it exists.

Let's derive a formula for the inverse of a 2×2 matrix.

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \\
& \text { (assume } a \neq 0 \text {) } \\
& a d-b c \neq 0 \\
& \frac{-b c}{a}+d=\frac{b c}{a}+\frac{a d}{a} \\
& =\frac{a d-b c}{a} \\
& \stackrel{(-c)}{a})\left[\begin{array}{ccc}
-c & \frac{-b c}{a} & \frac{-c}{a} \\
a & 0 \\
c & d & 1 \\
0 & 1
\end{array}\right]\left(\frac{a}{a d-b}\right)\left[\begin{array}{cc:cc}
a & b & 1 & 0 \\
0 & \frac{a d-b}{a} & \frac{c}{9} & 1
\end{array}\right] \\
& \left.\begin{array}{rl}
(-b)
\end{array}\right]\left[\begin{array}{cc:cc}
a & b & 1 & 0 \\
0 & 1 & : \frac{-c}{a d-b c} & \frac{a}{a d-b c} \\
0 & -b & \frac{b c}{a d-b c} & \frac{-a b}{a d-b c}
\end{array}\right]\left(\frac{1}{a}\right)\left[\begin{array}{llll}
a & 0 & \vdots a d & \frac{-c b}{a d-b c} \\
0 & 1 & \vdots \frac{-c}{a d-b c} & \frac{a}{a d-b c}
\end{array}\right] \\
& {\left[\begin{array}{ll:ll}
1 & 0 & : \frac{d}{a d-b c} & \frac{-b}{a d-b c} \\
0 & 1 & : \frac{-c}{a d-b c} & \frac{a}{a d-b c}
\end{array}\right]} \\
& A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right] \\
& \text { aside } \\
& \frac{b c}{a d-b c}+1=\frac{b c}{a d-b c}+\frac{a d-b c}{a d-b c} \\
& =\frac{a d}{a d-b c} \\
& \text { formula for } A^{-1} \text {, then } \\
& A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \text { if } a d-b c \neq 0 .
\end{aligned}
$$

We can write a system of linear equations as a matrix equation
$A X=C$, where A is a matrix of coefficients, X is the matrix of variables and C is the matrix of constants.

Ex 3: Write this system of equations as a matrix equation.

$$
\begin{aligned}
& \begin{array}{l}
2 x+y=4 \\
5 x+3 y=6
\end{array} \quad A=\left[\begin{array}{ll}
2 & 1 \\
5 & 3
\end{array}\right] \quad X=\left[\begin{array}{l}
x \\
y
\end{array}\right] \quad C=\left[\begin{array}{l}
4 \\
6
\end{array}\right] \\
& A X=\left[\begin{array}{ll}
2 & 1 \\
5 & 3
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
2 x+y \\
5 x+3 y
\end{array}\right]=\left[\begin{array}{l}
4 \\
6
\end{array}\right] \\
& \text { Ex 4: Using this fact from Ex. 1, } A=\left[\begin{array}{ll}
2 & 1 \\
5 & 3
\end{array}\right] \quad A^{-1}=\left[\begin{array}{cc}
3 & -1 \\
-5 & 2
\end{array}\right] \\
& \text { find the solution to Ex. }
\end{aligned}
$$ find the solution to Ex. 3.

$$
\begin{aligned}
& A X=B \quad X=A^{-1} B \\
& A^{-1} A x=A^{-1} B \\
& I X=A^{-1} B \\
& X=A^{-1} B \\
& \text { assuming } A^{-1} \text { exists. } \\
& X=\left[\begin{array}{cc}
3 & -1 \\
-5 & 2
\end{array}\right]\left[\begin{array}{l}
4 \\
6
\end{array}\right] \\
& =\left[\begin{array}{l}
3(4)+-1(6) \\
-5(4)+2(6)
\end{array}\right]=\left[\begin{array}{c}
6 \\
-8
\end{array}\right] \\
& x=6, y=-8 \text { or } p+(6,-8)
\end{aligned}
$$

Ex 5: Refer back to example 2 to solve these systems of equations.

$$
A=\left[\begin{array}{cc}
2 x-3 y & =8 \\
-4 x+6 y & =-5 \\
-4 & -3 \tag{2}\\
-4
\end{array}\right] \quad B=\left[\begin{array}{c}
8 \\
-5
\end{array}\right]
$$

$$
X=A^{-1} B
$$

(1) $2 x-3 y=8$

$$
-4 x+6 y=-5
$$

$$
\Leftrightarrow 2 x-3 y=\frac{5}{2}
$$

(parallel lines)

Find A^{-1}, if we can. diode by o!!!

$\Rightarrow A^{\prime \prime} D N E$

\Rightarrow for this system of equs, there's N.S.

$$
\begin{align*}
& \text { a) } 2 x+3 y=0 \\
& x+4 y=-5 \\
& A=\left[\begin{array}{ll}
2 & 3 \\
1 & 4
\end{array}\right] \quad A^{-1}=\frac{1}{3}\left[\begin{array}{cc}
4 & -3 \\
-1 & 2
\end{array}\right] \\
& A X=B \quad B=\left[\begin{array}{c}
0 \\
-5
\end{array}\right] \\
& X=A^{-1} B=\frac{1}{5}\left[\begin{array}{cc}
4 & -3 \\
-1 & 2
\end{array}\right]\left[\begin{array}{c}
0 \\
-5
\end{array}\right] \\
& \left.\begin{array}{l}
x=\frac{1}{5}\left[\begin{array}{ll}
0+15 \\
-1 & 2
\end{array}\right]\left[\begin{array}{l}
-5 \\
0+-10
\end{array}\right]=\left[\begin{array}{ccc}
15 \\
-10
\end{array}\right]=\left[\begin{array}{ccc}
3 \\
-2 & -3 & 1 \\
-3 & -3 & 1 \\
-2
\end{array}\right]\left[\begin{array}{c}
2 \\
-2
\end{array}-41\right.
\end{array}\right]=\left[\begin{array}{c}
2 \\
15
\end{array}\right]\left[\begin{array}{c}
(2
\end{array}\right] \tag{3,-2}\\
& \text { b) } \\
& \begin{array}{cc}
x-y & =2 \\
x-z & =3 \\
6 x-2 y-3 z & =15
\end{array}=\left[\begin{array}{ccc}
1 & -1 & 0 \\
1 & 0 & -1 \\
6 & -2 & -3
\end{array}\right] \\
& B=\left[\begin{array}{l}
2 \\
3 \\
15
\end{array}\right] \quad A^{-1}=\left[\begin{array}{lll}
-2 & -3 & 1 \\
-3 & -3 & 1 \\
-2 & -4 & 1
\end{array}\right] \\
& X=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=A^{-1} B \\
& \text { Ex 6: Solve this system using the techniques of this lesson. }
\end{align*}
$$

