

Definition of a Matrix

A matrix is an array of numbers with *m* rows and *n* columns. The size of a matrix is described as $m \times n$. This is called the <u>dimension</u> of a matrix.

Ex 1: Determine the dimension of each matrix.

$$A = \begin{bmatrix} 1 & 0 & -5 \\ -2 & 5 & 0 \\ 1 & 4 & 2 \end{bmatrix} \qquad B = \begin{bmatrix} 3 & 7 & 3 & 6 \\ 0 & 2 & -1 & 4 \\ 3 & 5 & 1 & 0 \end{bmatrix} \qquad C = \begin{bmatrix} -3 & 5 & 1 & 8 \end{bmatrix} \quad D = \begin{bmatrix} 2 \\ 0 \\ 5 \end{bmatrix}$$

$$E = \begin{bmatrix} 1 & 3 & 2 \\ 0 & -1 & 0 \\ 2 & 5 & 2 \end{bmatrix} \qquad F = \begin{bmatrix} 1 & 0 \\ -2 & 4 \\ 3 & -1 \end{bmatrix} \qquad I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

The elements of a matrix are called <u>entries</u>. An $m \times n$ matrix has $m \cdot n$ entries. Two matrices are equal only if they are the same dimension and each corresponding element is equal.

Ex 2: If
$$\begin{bmatrix} x & 2 \\ 4 & 3 \end{bmatrix} = \begin{bmatrix} -2 & 2 \\ 4 & y \end{bmatrix}$$
, solve for x and y.

Operations with Matrices

<u>Matrix Addition/Subtraction</u> $\implies A \pm B$

If two matrices are the same dimension, then addition or subtraction may be accomplished by adding/subtracting the corresponding entries of the two matrices.

$A = \begin{bmatrix} 1 & 0 & -5 \\ -2 & 5 & 0 \\ 1 & 4 & 2 \end{bmatrix}$	$B = \begin{bmatrix} 3 & 7 & 3 & 6 \\ 0 & 2 & -1 & 4 \\ 3 & 5 & 1 & 0 \end{bmatrix}$	$C = \left[\begin{array}{rrrr} -3 & 5 & 1 & 8 \end{array} \right]$	$D = \begin{bmatrix} 2 \\ 0 \\ 5 \end{bmatrix}$
	$G = \begin{bmatrix} 1 & 0 \\ -2 & 4 \\ 3 & -1 \end{bmatrix}$	$\boldsymbol{I} = \left[\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right]$	$\boldsymbol{O} = \left[\begin{array}{rrr} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right]$

Ex 2: Determine which matrices from example 1 can be added or subtracted, then perform each operation on them (Exclude the Identity matrix.)

<u>Scalar Multiplication</u> $\Rightarrow kA$

A scalar is a real number. Multiplication of a matrix by a scalar, k is accomplished by multiplying each entry by that scalar.

Ex 3: Perform these operations.

Properties of Matrix Addition

- **Commutative Property:** For all $m \times n$ matrices, A + B = B + A
- Associative Property: For all $m \times n$ matrices, (A+B)+C = A+(B+C)
- Identity Property: For all $m \times n$ matrices, A + 0 = 0 + A = A
- Inverse Property: Every $m \times n$ matrix A has a unique additive inverse, denoted -A, such that A + (-A) = (-A) + A = 0

Ex 4: Write an additive identity matrix and an additive inverse matrix for each of these.

a)
$$G = \begin{bmatrix} 1 & 0 \\ -2 & 4 \\ 3 & -1 \end{bmatrix}$$
 b) $C = \begin{bmatrix} -3 & 5 & 1 & 8 \end{bmatrix}$

Multiplying Matrices

To multiply an $m \times p$ and $p \times n$ matrix, note that the number of columns in the first matrix must be equal to the number of rows in the second matrix. The result will be an $m \times n$ matrix.

Let's begin by demonstrating what it means to multiply a row of one matrix by a column of another

For the matrices $A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$ $B = \begin{bmatrix} 5 & -6 \\ 7 & 0 \end{bmatrix}$ R_1 will denote row 1 of A

and C_1 will denote column 1 of B.

To multiply R_1 by C_1 means this: $R_1C_1 = \begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} 5 \\ 7 \end{bmatrix} = 1(5) + 2(7) = 19$

Ex 5: Determine each of these for *A* and *B* above.

a)
$$R_1C_2$$
 b) R_2C_1 c) R_2C_2
The result is $AB = \begin{bmatrix} R_1C_1 & R_1C_2 \\ R_2C_1 & R_2C_2 \end{bmatrix}$.

Ex 6: a) Write the matrix AB for Ex 5. b) Compute BA for the same matrices.

Matrix Multiplication: Suppose A is an $m \times p$ matrix and B is a $p \times n$ matrix. Let			
R_i denote the i^{th} row of A and C_j denote the j^{th} column of B . The product of A and B , denoted			
AB, is the matrix defined by			
$AB = \begin{bmatrix} R_1C_1 & R_1C_2 & \cdots & R_1C_n \\ R_2C_1 & R_2C_2 & \cdots & R_2C_n \\ \vdots & \vdots & \vdots \\ R_mC_1 & R_mC_2 & \cdots & R_mC_n \end{bmatrix}$			

Ex 7: Perform multiplication on these.

a)
$$\begin{bmatrix} -3 & 4 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 5 \\ 1 \end{bmatrix}$$
 b) $\begin{bmatrix} 5 & 2 \\ 3 & -1 \end{bmatrix}^2$ c) $\begin{bmatrix} -1 & 3 & 6 \\ 4 & 0 & 2 \end{bmatrix} \begin{bmatrix} 0 & 6 & -2 \\ 3 & 5 & 1 \\ -3 & 4 & 0 \end{bmatrix}$

Properties of Matrix Multiplication Let A, B and C be matrices such that all of the matrix products below are defined and let r be a real number.

- Associative Property of Matrix Multiplication: (AB)C = A(BC)
- Associative Property with Scalar Multiplication: r(AB) = (rA)B = A(rB)
- Identity Property: For a natural number k, the k×k identity matrix, denoted I_k, is a square matrix containing 1's down the main diagonal and 0's elsewhere. For a m×n matrix A, I_mA = AI_n = A.
- Distributive Property of Matrix Multiplication over Matrix Addition:

 $A(B\pm C) = AB\pm AC$ and $(A\pm B)C = AC\pm BC$