

$$
\begin{gathered}
-3 x+4 y=5 \\
2 x-y=-10 \\
{\left[\begin{array}{cc}
-3 & 4 \\
2 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
5 \\
-10
\end{array}\right]}
\end{gathered}
$$

$$
\begin{aligned}
& \sum_{k=1}^{m} k=\frac{m(m+1)}{2} \\
& \sum_{k=0}^{n} z^{k}=\frac{1-z^{n+1}}{1-z}
\end{aligned}
$$

Math 1050 ~ College Algebra

24 Matrix Arithmetic

Learning Objectives

- Find the sum and difference of two matrices.
- Find the scalar multiple of a matrix.

Find the product of two matrices.

Definition of a Matrix

A matrix is an array of numbers with m rows and n columns. The size of a matrix is described as $m \times n$. This is called the dimension of a matrix.
Ex 1: Determine the dimension of each matrix.
$A=\left[\begin{array}{ccc}1 & 0 & -5 \\ -2 & 5 & 0 \\ 1 & 4 & 2\end{array}\right] \quad B=\left[\begin{array}{cccc}3 & 7 & 3 & 6 \\ 0 & 2 & -1 & 4 \\ 3 & 5 & 1 & 0\end{array}\right] \quad C=\left[\begin{array}{llll}-3 & 5 & 1 & 8\end{array}\right] \quad D=\left[\begin{array}{l}2 \\ 0 \\ 5\end{array}\right]$
3×3 matrix
(square matrix)
$m=n$
1×4

$$
3 \times 1
$$

$E=\left[\begin{array}{ccc}1 & 3 & 2 \\ 0 & -1 & 0 \\ 2 & 5 & 2\end{array}\right] \quad F=\left[\begin{array}{cc}1 & 0 \\ -2 & 4 \\ 3 & -1\end{array}\right] \quad I=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ identity matiox

$$
3 \times 3 \quad 3 \times 2 \quad 3 \times 3
$$

The elements of a matrix are called entries. An $m \times n$ matrix has $m \cdot n$ entries.
Two matrices are equal only if they are the same dimension and each corresponding element is equal.

Ex 2: If $\left[\begin{array}{ll}x & 2 \\ 4 & 3\end{array}\right]=\left[\begin{array}{cc}-2 & 2 \\ 4 & y\end{array}\right]$, solve for x and y.

$$
\begin{gathered}
2 \times 2 \quad 2 \times 2 \\
x=-2 \text { and } y=3
\end{gathered}
$$

Operations with Matrices

$\underline{\text { Matrix Addition/Subtraction }} \Rightarrow A \pm B$
If two matrices are the same dimension, then addition or subtraction may be accomplished by adding/subtracting the corresponding entries of the two matrices.
$\begin{gathered}A \\ \mathbf{3} \mathbf{3}\end{gathered}=\left[\begin{array}{ccc}1 & 0 & -5 \\ -2 & 5 & 0 \\ 1 & 4 & 2\end{array}\right] \quad \underset{3 \times 4}{B}=\left[\begin{array}{cccc}3 & 7 & 3 & 6 \\ 0 & 2 & -1 & 4 \\ 3 & 5 & 1 & 0\end{array}\right] \quad \underset{\mathbf{| x 4}}{C}=\left[\begin{array}{llll}-3 & 5 & 1 & 8\end{array}\right] \quad D=\left[\begin{array}{l}2 \\ 0 \\ 5\end{array}\right] \mathbf{3 \times 1}$

Ex 2: Determine which matrices from example 1 can be added or subtracted, then perform each operation on them (Exclude the Identity matrix.)

A scalar is a real number. Multiplication of a matrix by a scalar, k is accomplished by multiplying each entry by that scalar.

$$
\begin{aligned}
& \text { Ex 3: Perform these operations. } \\
& \text { a) } 5 C=5\left[\begin{array}{llll}
-3 & 5 & 1 & 8
\end{array}\right] \\
& =\left[\begin{array}{llll}
-15 & 25 & 5 & 40
\end{array}\right] \\
& \text { b) }-3 G=-3\left[\begin{array}{cc}
1 & 0 \\
-2 & 4 \\
3 & -1
\end{array}\right] \\
& =\left[\begin{array}{l}
{\left[\begin{array}{l}
0 \\
4
\end{array}\right]} \\
-1
\end{array}\right] \\
& \text { c) } 2 \boldsymbol{I}-3 A \\
& =2\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]-3\left[\begin{array}{ccc}
1 & 0 & -5 \\
-2 & 5 & 0 \\
1 & 4 & 2
\end{array}\right] \\
& \left.\begin{array}{l}
=\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 2 & 2
\end{array}\right]\left[\begin{array}{ccc}
3 & 0 & -15 \\
-6 & -15 \\
3 & 12 & 0
\end{array}\right] \\
=-10
\end{array}\right] \\
& =\left[\begin{array}{ccc}
-1 & 0 & 15 \\
6 & -13 \\
-3 & -12 & -4
\end{array}\right]
\end{aligned}
$$

Properties of Matrix Addition

- Commutative Property: For all $m \times n$ matrices, $A+B=B+A$
(We can $\begin{aligned} & \text { reorder }) ~\end{aligned}$
- Associative Property: For all $m \times n$ matrices, $(A+B)+C=A+(B+C)$

- Identity Property: For all $m \times n$ matrices, $A+\mathbf{0}=\mathbf{0}+A=A$

- Inverse Property: Every $m \times n$ matrix A has a unique additive inverse, denoted $-A$, such that $A+(-A)=(-A)+A=\mathbf{0}$

Ex 4: Write an additive identity matrix and an additive inverse matrix for each of these.
a) $G=\left[\begin{array}{cc}1 & 0 \\ -2 & 4 \\ 3 & -1\end{array}\right]$
$\begin{aligned} O & =\left[\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\right] \begin{array}{l}\text { additive } \\ \text { identity } \\ \text { Matrix }\end{array} \\ -G & =\left[\begin{array}{cc}-1 & 0 \\ 2 & -4 \\ -3 & 1\end{array}\right] \begin{array}{l}\text { additive } \\ \text { inverse } \\ \text { of } C\end{array}\end{aligned}$
b) $C=\left[\begin{array}{llll}-3 & 5 & 1 & 8\end{array}\right]$

$$
0=\left[\begin{array}{llll}
0 & 0 & 0 & 0
\end{array}\right]
$$

$$
-C=\left[\begin{array}{llll}
3 & -5 & -1 & -8
\end{array}\right]
$$

additive inverse for C

Multiplying Matrices
To multiply an $m \times p$ and $p \times n$ matrix, note that the number of columns in the first matrix must be equal to the number of rows in the second matrix. The result will be an $m \times n$ matrix.

Let's begin by demonstrating what it means to multiply a row of one matrix by a

$$
\begin{aligned}
& \text { column of another } \\
& \text { For the matrices } A=\left[\begin{array}{ll}
1 & 2 \\
4 & 3
\end{array}\right] \quad B=\left[\begin{array}{cc}
5 & -6 \\
7 & 0
\end{array}\right]
\end{aligned}
$$

R_{1} will denote row 1 of A
and C_{1} will denote column 1 of B.
To multiply R_{1} by C_{1} means this: $R_{1} C_{1}=\left[\begin{array}{ll}1 & 2\end{array}\right]\left[\begin{array}{l}5 \\ 7\end{array}\right]=1(5)+2(7)=19$

Ex 5: Determine each of these for A and B above.

$$
\text { a) } \begin{aligned}
R_{1} C_{2} & =\left[\begin{array}{ll}
1 & 2
\end{array}\right]\left[\begin{array}{l}
-6 \\
0 \\
0
\end{array}\right] \\
& =1(-6)+2(0) \\
& =-6+0=-6
\end{aligned}
$$

$$
\text { b) } R_{2} C_{1}=\left[\begin{array}{ll}
4 & 3
\end{array}\right]\left[\begin{array}{l}
5 \\
7
\end{array}\right]
$$

$$
\text { c) } R_{2} C_{2}=\left[\begin{array}{ll}
4 & 3
\end{array}\right]\left[\begin{array}{c}
-6 \\
0
\end{array}\right]
$$

$$
=4(5)+3(7)
$$

$$
=4(-6)+3(0)
$$

The result is $A B=\left[\begin{array}{ll}R_{1} C_{1} & R_{1} C_{2} \\ \left.(2 \sqrt{2})^{2} \Omega\right)\end{array}\right]$ $=20+21=41$ $=-24+0=-24$

Ex 6: a) Write the matrix $A B$ for Ex 5. b) Compute $B A$ for the same matrices.
multiplication of matrices is NOT commutative, ie. order of multiplication maters.

$$
\begin{aligned}
& A B=\left[\begin{array}{cc}
19 & -6 \\
41 & -24
\end{array}\right] \\
& A=\left[\begin{array}{ll}
1 & 2 \\
4 & 3
\end{array}\right] \quad B=\left[\begin{array}{cc}
5 & -6 \\
7 & 0
\end{array}\right] \\
& \text { (b) } B A=\left[\begin{array}{cc}
5 & -6 \\
7 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
4 & 3
\end{array}\right]=\left[\begin{array}{c}
5(1)+4(4)(2(2)+6(6) \\
2 \times 2) \\
2 \times 2
\end{array}\right. \\
& \Rightarrow A B \neq B A \\
& =\left[\begin{array}{cc}
-19 & -8 \\
7 & 14
\end{array}\right]
\end{aligned}
$$

Matrix Multiplication: Suppose A is an $m \times p$ matrix and B is a $p \times n$ matrix. Let R_{i} denote the $i^{\text {th }}$ row of A and C_{j} denote the $j^{\text {th }}$ column of B. The product of A and B, denoted $A B$, is the matrix defined by

$$
A B=\left[\begin{array}{cccc}
R_{1} C_{1} & R_{1} C_{2} & \cdots & R_{1} C_{n} \\
R_{2} C_{1} & R_{2} C_{2} & \cdots & R_{2} C_{n} \\
\vdots & \vdots & & \vdots \\
R_{m} C_{1} & R_{m} C_{2} & \cdots & R_{m} C_{n}
\end{array}\right]
$$

Ex 7: Perform multiplication on these.

Properties of Matrix Multiplication Let A, B and C be matrices such that all of the matrix products below are defined and let r be a real number.

- Associative Property of Matrix Multiplication: $(A B) C=A(B C)$ regroup
- Associative Property with Scalar Multiplication: $r(A B)=(r A) B=A(r B)$

- Identity Property: For a natural humber k, the $\boldsymbol{k} \times \boldsymbol{k}$ identity matrix, denoted I_{k}, is a square matrix containing l's down the main diagonal and 0 's elsewhere. For a $m \times n$ matrix $A I_{m} A=A I_{n}=A$.
- Distributive Property of Matrix Multiplication over Matrix Addition:

$$
A(B \pm C)=A B \pm A C \text { and }(A \pm B) C=A C \pm B C
$$

