

Solving three equations in three variables takes a bit of writing. We can reduce some of that by writing the set of equations as an augmented matrix. A matrix is a structured array of numbers grouped by square brackets. We only write the coefficients and constants.

Ex 1a: Write this set of equations as an augmented matrix.

$$
\begin{aligned}
x-y+z & =4 \\
x+3 y-2 z & =-3 \\
3 x+2 y+2 z & =6
\end{aligned}
$$

We can operate on this matrix using the same set of rules that we used for Gaussian elimination in the last section.

1. Exchange two rows.
2. Multiply a row by a nonzero constant.
3. Temporarily multiply a row by a nonzero constant and add it to another row, replacing either of those rows with the result.

Ex 1 b : Solve this system of equations from 1a by using these options.

Row Echelon Form

Ex 2: Solve for x, y and z in these augmented matrices representing a set of equations.
a) $\left[\begin{array}{ccccc}1 & 0 & 0 & \vdots & -3 \\ 0 & 1 & 0 & \vdots & 1 \\ 0 & 0 & 1 & \vdots & 0\end{array}\right]$
b) $\left[\begin{array}{ccc:c}1 & -2 & 3 & \vdots \\ 0 & 1 & 3 & \vdots \\ 0 & 0 & 1 & \vdots \\ \hline\end{array}\right.$

These are examples of row echelon form and reduced row echelon form. Our goal is to reduce a set of equations to one of these forms, using Gaussian elimination.

Ex 3: Solve this set of equations by reducing them to each of the forms above.

$$
\begin{aligned}
2 x-2 y+z & =-9 \\
x+y+2 z & =-5 \\
x \quad-z & =11
\end{aligned}
$$

Ex 4: Set up this set of equations as an augmented matrix and put in reduced row echelon form.
$A=2$
$B=-1$
$3 A+2 C=0$
$2 B-D=-5$

What happens if the system has infinite solutions or no solutions?
Ex 5: Write the solution to each system below.
a)

b) $\left[\begin{array}{ccccc}1 & 0 & 0 & \vdots & -3 \\ 0 & 1 & 0 & \vdots & 1 \\ 0 & 0 & 0 & \vdots & 2\end{array}\right]$
c) $\left[\begin{array}{ccccc}1 & 0 & 0 & \vdots & -3 \\ 0 & 1 & 0 & \vdots & 1 \\ 0 & 0 & 0 & \vdots & 0\end{array}\right]$

