

A linear equation in three variables, x, y and z is an equation of the form $a x+b y+c z=d$ where a, b, c and d are constants and at least one of a, b and c is nonzero. Such an equation represents a plane in 3-D space.

Here are some possibilities of the intersection of three planes.

We will solve these equations by using linear combinations. Your goal is to solve for x, y and z. This procedure is called Elimination.
Here are the legitimate actions you may take.

1. Exchange two rows.
2. Multiply a row by a constant.
3. Temporarily multiply a row by a constant and add it to another row, replacing either of those rows with the result.

Ex 1: Solve this system by using Elimination.

$$
\begin{aligned}
x-y+z & =4 \\
x+3 y-2 z & =-3 \\
3 x+2 y+2 z & =6
\end{aligned}
$$

$$
\text { Ex 2: Solve } \begin{aligned}
x-2 y+z & =4 \\
3 x-6 y+3 z & =7 \\
2 x+y+4 z & =2
\end{aligned}
$$

Ex 3: Solve $\begin{aligned} & x-2 y-z=-5 \\ & 2 x+y+z=5\end{aligned}$

Ex 4: Find the equation of the parabola, $\mathrm{y}=a x^{2}+b x+c$ that passes through these three points, $(0,3),(1,4)$ and $(2,3)$.

