

$-3 x+4 y=5$
$2 x-y=-10$
$\left[\begin{array}{cc}-3 & 4 \\ 2 & -1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}5 \\ -10\end{array}\right]$

Math 1050 ~ College Algebra

21 Systems of Linear and Non-Linear Equations

Learning Objectives

- Solve systems of two linear equations in two variables using substitution.
- Solve systems of two linear equations in two variables using elimination.
- Interpret solutions to 2×2 systems of linear equations.
- Solve systems of two non-linear equations in two variables using elimination.
- Solve systems of two non-linear equations in two variables using substitution.
- Solve and interpret solutions to 2×2 systems of non-linear equations.

A system of equations is simply more than one equation with two or more variables that we solve simultaneously.
If the two equations are linear, then one of three results is possible.
(1)

(3)

pt(onneur) lines that
porategies
Solving Strategies

1. Graph
$\left[\begin{array}{l}\text { 2. Substitution } \\ \text { 3. Elimination }\end{array}\right]$ most preferred
2. Other methods
the same line
(infinitely many
solutions all th pts on the line)
3. Other methods

Ex 1: Solve using substitution.
a) $x-y=-4 \zeta$ a system $x+2 y=5\left\{\begin{array}{l}\text { of linear } \\ \text { eons in } 2\end{array}\right.$ variables
(1)choose either eon and one variable to solve for
(2) solve for that variable in chosen egn
(3) plug in expression for chosen variable in other
eqn
(1) $x-y=-4$
(2) $x+2 y=5$
choose 1 , solve
b) $\left.\begin{array}{r}3 x+y=2 \\ x^{3}-2+y=0 \\ \text { (1) }\end{array}\right\}$
(1) solve for \boldsymbol{y}.
(1) $y=-3 x+2$
(2) $y=-x^{3}+2$

\} a system
$x^{3}-2+y=0\left\{\begin{array}{l}\text { of non-linear } \\ \text { equs in } 2 \\ \text { variables }\end{array}\right.$

$$
y=-3 x+2
$$

(2) $x^{3}-x+(-3 x+2)=0$

$$
\begin{aligned}
x^{3}-3 x & =0 \\
x\left(x^{2}-3\right) & =0 \\
x=0 \quad x^{2}-3 & =0 \\
x^{2} & =3 \\
x & = \pm \sqrt{3}
\end{aligned}
$$

$\left|\begin{array}{l|l|l}x=0 \\ y=-3(0)+2 \\ y=2\end{array}\right| \begin{aligned} & x=\sqrt{3} \\ & y=-3 \sqrt{3}+2 \left\lvert\, \begin{array}{l}x=-\sqrt{3} \\ y=-3(\sqrt{3})+2 \\ y=3 \sqrt{3}+2\end{array}\right., ~\end{aligned}$
solution:

Ex 2: Solve by graphing, then by substitution.
(1) $2 x-y+3=0 \quad y=2 x+3$
(2)

$$
\begin{aligned}
& x^{2}+y^{2}-4 x=0 \\
& \left(x^{2}-4 x+4\right)-4+y^{2}=0 \\
& (x-2)^{2}+y^{2}=4
\end{aligned}
$$

circle w/ center at $(2,0)$
No solution

$$
r=2
$$

$$
\text { (1) } y=2 x+3
$$

(2) $x^{2}+y^{2}-4 x=0$
(2) $x^{2}+(2 x+3)^{2}-4 x=0$

$$
x^{2}+4 x^{2}+6 x+6 x+9-4 x=0
$$

Ex 3: Solve by Elimination.
a) $3 x-2 y=7$
$8 x+4 y=0$
b)

$$
\begin{aligned}
& x^{2}+3 y=60 \\
& y^{2}-x^{2}=40
\end{aligned}
$$

\Rightarrow no valid x-value
\Rightarrow No solution
(1) egos are listed in same order
(2) add straight down to eliminate a variable
OR might have to "scale"
one or both egos frost
to get a math hing (but opposite
sign) term
(3) finish solving

$$
\begin{aligned}
& \text { (1) }(3 x-2 y=7) 2 \\
& \text { (2) } 8 x+4 y=0
\end{aligned}
$$

(16) $6 x-4 y=14$
$\frac{(2)+8 x+4 y=0}{14 x=14}$

$$
\begin{aligned}
x & =1 \\
3(1)-2 y & =7 \\
3-2 y & =7 \\
-2 y & =4 \\
y & =-2
\end{aligned}
$$

(1)
solution: $(1,-2)$

$$
\begin{aligned}
& \text { (1) } x^{2}+3 y=6 \\
& \text { (2) }-x^{2}+y^{2}=4 \\
& \hline 3 y+y^{2}=10 \\
& y^{2}+3 y-10=0 \\
& (y+5)(y-2)=0 \\
& y+5=0 \quad y-2=0 \\
& y=-5 \text { or } y=2 \\
& x^{2}-15=6 \quad x^{2}+6=6 \\
& x^{2}=21 \\
& x= \pm \sqrt{21} \quad x^{2}=0 \\
& x=0
\end{aligned}
$$

(1)

$$
\text { Solutions: } \begin{gathered}
(\sqrt{21},-5),(-\sqrt{21},-5), \\
(0,2)
\end{gathered}
$$

Ex 4: Solve algebraically by a method of your choice.
a) $5(5 x-3 y=-2)$ (1)

3(3x+5y $=9$) (2)
elimination method

(1)

$$
\begin{aligned}
5\left(\frac{1}{2}\right)-3 y & =-2 \\
-3 y & =-2-\frac{5}{2} \\
\frac{-1}{3} \cdot-3 y & =\frac{-9}{2} \cdot \frac{-1}{3} \\
y & =\frac{3}{2}
\end{aligned}
$$

solution: $\left(\frac{1}{2}, \frac{3}{2}\right)$
b)

$$
\begin{aligned}
& 3 y=4 x-5 \\
& -8 x+6 y=1
\end{aligned}
$$

Substitution method

$$
\begin{gathered}
-8 x+2(3 y)=1 \\
-8 x+2(4 x-5)=1 \\
-8 x+8 x-10=1 \\
-10=1
\end{gathered}
$$

false statement
\Rightarrow No solution
(these lines are parallel)
c) $9 x-3 y=-15$ (1)

$$
-3 x+y=5 \text { (2) }
$$

substitution method

$$
\text { (2) } y=3 x+5
$$

$$
\text { (1) } 9 x-3(3 x+5)=-15
$$

$$
9 x-9 x-15=-15
$$

$$
-15=-15
$$

true statement
infinitely many solutions, ie.
these are the same line

Application
Ex 5: Two planes start from LAX and fly in opposite directions. The second plane starts a half-hour after the first plane, but its speed is 80 kph faster. Find the airspeed of each plane if 2 hours after the first plane departs the planes are 3200 km apart.

A: $2 r=d$

$$
B:(r+80) \frac{3}{2}=3200-d
$$

B. $\frac{3}{2} r+80\left(\frac{3}{2}\right)=3200-2 r$

$$
\begin{aligned}
& \begin{array}{l}
\frac{3}{2} r+120=3200-2 r \\
\frac{2}{7} \cdot \frac{7}{2} r=3080 \cdot \frac{2}{7} \\
\text { Speed } r=880 \mathrm{kph} \\
\text { of plane } A
\end{array}
\end{aligned}
$$

speed of plane β

$$
r+80=960 \mathrm{kph}
$$

