

Math 1050 ~ College Algebra

$-3 x+4 y=5$
$2 x-y=-10$
$\left[\begin{array}{cc}-3 & 4 \\ 2 & -1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}5 \\ -10\end{array}\right]$

20 Applications of Exponentials and Logarithms

Learning Objectives

- Use compound interest formulas to solve financial applications.
$\sum_{k=1}^{m} k=\frac{m(m+1)}{2}$
$\sum_{k=0}^{n} z^{k}=\frac{1-z^{n+1}}{1-z}$
- Solve applications of uninhibited growth and decay.
- Solve additional applications represented by exponential and logarithmic models.

Simple, Compound and Continuously Compounded Interest
Ex 1: If you invest $\$ 100$ at a yearly interest rate of 5%, show how it will grow during the first five years.

$$
r=0.05
$$

Simple Interest
Compound Interest

$k^{k} 1$	$(100+0.05(100))=\$ 105$	$100+0.05(100)=\$ 105$
$k^{\prime 2}$	$100(1+2(0.05))=\$ 110$	$100(1+0.05)^{2}=\$ 110.25$
$x^{=3}$	$100(1+3(0.05))=\$ 115$	$100(1+0.05)^{3}=\$ 115.76$
k^{4}	$100(1+4(0.05))=\$ 120$	$100(1+0.05)^{4}=\$ 121.55$
$t^{=5}$	$100(1+5(0.05))=\$ 125$	$100(1+0.05)^{5}=\$ 127.63$
$t=100$	$100(1+100(0.05))=\$ 600$	$100(1+0.05)^{100}=\$ 13,150.13$

Compound Interest (once per year): $A=P(1+r)^{t}$
Ex 2: How much must you invest at age 40 so that you will have a million dollars by the time you retire at 70? Assume an interest rate of 7% compounded annually.

$$
\begin{aligned}
& r= 0.07, P=?, t=30, A=\$ 1,000,000 \\
& 1000000=P(1+0.07)^{30} \\
& \frac{1000000}{1.07}=P \\
& P=\$ 131,367.12 \text { one lump sum deposit }
\end{aligned}
$$

In general, the formula for compound interest is $A=P\left(1+\frac{r}{n}\right)^{n t}$
A $=$ balance after t years

$$
\begin{aligned}
& \text { A = balance after } t \text { years } \\
& P=\text { principal } \\
& r=\text { annual interest rate } \\
& t=\text { number of years } \\
& n=\text { number of times it is compounded per year } \\
& A=P\left(1+\frac{r}{n}\right)
\end{aligned}
$$

Ex 3: Show the difference between compounding one time per year and twelve times per year when investing $\$ 1000$ at 5% interest for 10 years.

$$
P=1000, r=0.05, t=10
$$

(1) $n=1$

$$
A=1000\left(1+\frac{0.05}{1}\right)^{1(10)}
$$

$$
\text { (2) } \begin{aligned}
n & =12 \\
A & =1000\left(1+\frac{0.05}{12}\right)^{10(12)} \\
& \simeq \$ 1,647.01
\end{aligned}
$$

Ex 4: What if the compounding on example 3 is continuous?
$r=0.05, P=1000, t=10$ Formula for continuous

$$
\begin{aligned}
A & =1000\left(e^{0.05(10)}\right) \\
& \approx \$ 1,648.72
\end{aligned}
$$

compounding:

$$
A=P e^{r t}
$$

Exponential Growth and Decay
$k>0$ growth; $k<0$ decay
$A(t)=A_{0} e^{k t}$ is the general formula for the exponential growth or decay of substance.
A. read "A naught" (value of A when $t=0$)

Ex 5: The Half-life of radium $\left({ }^{226} \mathrm{R}\right)$ is 1620 years. What percent of the radium the will still be present after 150 years?
(1) compute k.

$$
\begin{aligned}
& \frac{1}{2} K_{0}=A_{0} e^{1620 k} \\
& \frac{1}{2}=e^{1620 k} \\
& \ln \left(\frac{1}{2}\right)=1620 k \\
& k=\frac{\ln \left(\frac{1}{2}\right)}{1620} \simeq-0.000428
\end{aligned}
$$

(2)

$$
A=A_{0} e^{-0.000428 t}
$$

$A=$? when $t=150 \mathrm{ys}$

$$
\begin{aligned}
A & =A_{0} e^{-0.000428(150)} \\
& \simeq 0.938 A_{0} \\
& \Rightarrow 93.8 \%
\end{aligned}
$$

Ex 6: A certain strain of dangerous bacteria is known to grow from 1000 to 5000 in 5 hours. Assume it grows according to the formula above. $A=A_{0} e^{k t}$
points (t, A) (0) $(0,1000)$ (2) (5,5000)
(a) Determine k, the growth constant and find a formula for the growth, $A(t)$. (expect $k>0) A_{0}=1000 \Rightarrow A=1000 e^{k t}$
use pt (2) to find k.

$$
\begin{aligned}
& \text { (2) to find } k . \\
& 5000=1000 e^{k(5)} \\
& 5=e^{5 k}
\end{aligned} \quad \begin{aligned}
& \ln 5=5 k \\
& k=\frac{\ln S}{5} \simeq 0.32189
\end{aligned}
$$

b) When will the number present be 12,000 ?
$t=$? when $A=12000 \quad A=1000 e^{0.32189 t}$

$$
\begin{aligned}
12000 & =1000 e^{0.32189 t} \\
12 & =e^{0.32189 t} \\
\ln 12 & =0.32189 t \\
t & =\frac{\ln 12}{0.32189} \simeq 7.72 \text { hours }
\end{aligned}
$$

Ex 7: A car that is priced at $\$ 25,000$ new, is worth $\$ 15,000$ after two years.
a) Find the linear model of depreciation. $V=m t+\boldsymbol{b} \quad$ Points (t, V)
b) Find the exponential model of depreciation. $V=a e^{k t}$
$O(0,25000)$
c) Sketch a graph of the two models.
(2) $(2,15000)$
d) Determine the value of the car at the end of five years for each of the models.
(a) $V=m t+25000$

$$
\begin{aligned}
& m=\frac{25000-15000}{0-2}=-5000 \\
& V=-5000 t+25000
\end{aligned}
$$

(b)

$$
V=a e^{k t} \quad a=25000
$$

$$
V=25000 e^{k t}\left(a=V_{0}\right)
$$

$$
15000=25000 e^{k(2)}
$$

(d) $V=-5000(5)+25000$

$$
0.6=e^{2 k}
$$ line: $V=0$

$$
\ln 0.6=2 k
$$

exp: $V=25000 e^{-0}$

$$
k=\frac{1}{2} \ln 0.6
$$

$$
k \simeq-0.2554
$$

$$
V=25000 e^{-0.2554 t}
$$

