
$\substack{-3 x+4=5 \\ 2 x-y=-10}$ Math $1050 \sim$ College Algebra

1 Introduction to Functions

Learning Objectives

- Determine whether a relation represents a function.
- Use the vertical line test to identify graphs of functions.
- Find the domain and range from the graph of a function.
- Find input and output values of a function.
- Find the domain from the equation of a function.

A relation is a set of ordered pairs. The set of first components of the ordered pairs is called the domain and the set of second components of the ordered pairs is called the range.
input value
II
independent variable
output value
11
dependent variable
(depends on input)

Ex: For each of these, state whether it is a relation, and if it is, list the elements in the domain and in the range.
a) $\{(1,5),(5,-2),(5,4),(3,2)\}$

Yes, it's a relation.
$D:\{1,5,3\} \quad R:\{5,-2,4,2\}$
c)

inputs $D=\{-3,-1,0,2,3\}$
outputs $R=\{3,0\}$

d) Input values: days of the week Output values: final letter in word
D: \{Sunday, Monday Tuesday, Wed., Thurs., Fin., Sat.\}
$R:\{y\}$
e) \{name, rank, serial number\}
not a relation

A function is a relation in which any two ordered pairs with the same first component also have the same second component.
a function has only one output for any Ex 2: From example 1, which of the relations are functions? function)
a) $\{(1,5),(5,-2),(5,4),(3,2)\}$
not a f_{n}, because input 5 has 2 outputs
c)

Yes, it's a fo because
every input has only one output
b) Bud

May
Ezi
Zhu Tia

15
yes, is a fin because every input has only one output
d) Input values: days of the week Output values: final letter in word
ex (Tuesday, y) (Wad., y)
Yes, a fin.

An equation in two variables can be a relation as can a 2-dimensional graph.

Ex 3: Which of these are functions?
$y=$ output variable name
a) $x+3=y^{2}$
$x=$ input variable name $y= \pm \sqrt{x+3} \Rightarrow$ there are 2 outputs for most
b) $2 y=\sqrt{x-1} \quad$ inputs \Rightarrow it is not a fun.
$y=\frac{1}{2} \sqrt{x-1} \Rightarrow$ for every x-value, we get back
c) $x^{2}+y^{2}=9 \quad$ one y-value \Rightarrow is a fin
ex if $x=\sqrt{5}$, than $x^{2}=5 \quad$ So one particular $S+y^{2}=9 \Longleftrightarrow y^{2}=4 \Leftrightarrow y= \pm 2$ *value yielded
d) $\{(3,1),(2,1),(5,1),(6,2)\}$
every input has only one output two yvalues
\Rightarrow this is a f_{n}

The Vertical Line Test: A graph represents a function if no vertical line intersects it at more than one point.

Ex 4: Use the vertical line test to determine if these relations are functions.

$$
R_{1}=\{(1,5),(5,-2),(5,4),(3,2)\} \quad R_{2}=\{(3,1),(2,1),(5,1),(-3,2)\}
$$

Some vertical lines pass through curve twice
\Rightarrow this relation is not a fou

Function Notation
f is a f_{n} that takes an input
 (x) and maps it to an output (y).

$$
y=f(x) \quad\left(\text { read "f of } x^{\prime \prime}\right)
$$

Ex 5: Evaluate these functions for the given values.
a) $f(x)=\sqrt{\underline{x}+8}+2$
b) $g(2)=-3$

$$
\begin{aligned}
& f(-8)=\sqrt{-8+8}+2=0+2=2 \\
& f(x-8)=\sqrt{(x-8)+8}+2=\sqrt{x}+2 \\
& f(a)=\sqrt{a+8}+2
\end{aligned}
$$

$g(0)=$
$g(0)$ is
undefined
$g(a)=-2$ for $a=3$
$\cdots \quad \mid+$

Domain of Functions
The domain of a function is the set of all input values for which the function is defined.

Implicit domain
Explicit domain
domain that's implied
by computations needed
in the function
Ex 6: Determine the domain for each of these functions and identify as implicit or explicit. clement of
\qquad
a) $f(x)=\sqrt[3]{x+4}$
$D: x \in \mathbb{R}^{\prime}$
(implicit)
note. we san take cube
root of any number
c) $g(x)=\frac{3}{x^{2}-2 x}=\frac{3}{X(x-2)}$
$x \neq 0,2$ (because those
(or x values make
$(-\infty, 0) \cup(0,2) \cup(2, \infty))$
(implicit)
d) $f(x)=\frac{\sqrt{x+4}}{4+x}$
e) $h(x)=5 x-3, \quad x>-1$
(1) cant divide by zero $\Rightarrow x \neq-4$
(2) can only take square root of nonnegative \#ts

D: $x>-1$ (or $(-1, \infty)$)
(explicit)

$$
\begin{gathered}
\Rightarrow x+4 \geq 0 \quad \text { (impliat) } \\
x \geq-4 \\
\Rightarrow D: x>-4 \\
(\text { or } x \in(-4, \infty))
\end{gathered}
$$

