

Math 1050 ~ College Algebra

19 Logarithmic Equations and Functions

Learning Objectives

- Determine the domain of a logarithmic function.
- Determine x- and y-intercepts of logarithmic functions.
- Graph logarithmic functions.
- Solve logarithmic equations.
- Solve applications of logarithmic functions.

Determine the Domain of a Logarithmic Function
Remember $\log x$ is only defined for $x>0$.
Ex 1: Determine the domain of each of these.
a) $f(x)=\log _{5}(x+3)$
b) $g(x)=\log \left(x^{2}+3\right)$
c) $\mathrm{h}(x)=\ln x-\ln (x+1)$
 domain: $x^{2}+3>0$

Solving Logarithmic Equations
$\frac{\text { domain }}{V>0}$

Ex 2: We will solve this equation by going through the basic steps.

$$
\log (5 x)+\log (x-1)=2
$$

a. Use properties of logs to condense logs into a single log expression on one side of the equation.

$$
\log (5 x(x-1))=2
$$

b. Exponentiate both sides with the base matching the base of the log. OR

$$
\begin{gathered}
10_{\text {as an equivalent expon }}^{\log -5 x)} \\
10^{2}=5 x^{2}-5 x
\end{gathered}
$$

d. Solve and check,

$$
\begin{aligned}
& 5 x^{2}-5 x-100=0 \\
& 5\left(x^{2}-x-20\right)=0 \\
& 5(x-5)(x+4)=0 \\
& x-5=0 \text { or } x+4=0 \quad \log (5 x)+\log (x-1)=2 \\
& x=s, \text { Y } \quad x=s: s(s)>0 \mathrm{~V} \\
& x=s: \begin{array}{l}
5(s)>0 v \\
s-1>0 v
\end{array} \\
& x=5 \\
& \begin{aligned}
& x=-4: \quad 5(-4)<0 \Rightarrow \text { throw } \\
& \text { away } \\
& x=-4
\end{aligned}
\end{aligned}
$$

Ex 3: Graph this logarithmic function by following these steps. $f(x)=\ln |x+1|$
a) Determine the domain.
b) Find the x - and y-intercepts.
c) Determine any asymptotes.
d) Plot a few points and sketch the curve.
(a) $|x+1|>0 \Rightarrow x+-1$

$$
(-\infty,-1) \cup(-1, \infty)
$$

(b) y-int: $(0,0)$

$$
y=\ln |0+1|=\ln \mid=0
$$

(c) VA: $x=-1$
(d)

Ex 4: Solve for x.
a) $\log _{3} x-\log _{3}(x+1)=2$

$$
\begin{gathered}
\log _{3}\left(\frac{x}{x+1}\right)=2 \\
3^{2}=\frac{x}{x+1} \\
9(x+1)=x \\
9 x+9=x \\
8 x+9=0 \\
8 x=-9 \\
x=-\frac{9}{8} \text { docsit samsun }
\end{gathered}
$$

check answer:
Original eqni $\log _{3} x-\log _{3}(x+1)$
notice: $\log _{3}\left(\frac{1}{8}\right)$
\Rightarrow answer is N.S.
b) $\ln (x+4)-\ln (x-2)=\ln x$

$$
\ln \left(\frac{x+4}{x-2}\right)=\ln x
$$

(use 1 to 1 property)
(x-2)

$$
\begin{aligned}
& \frac{x+4}{x-2}=x(x-2) \\
& x+4=x^{2}-2 x \\
& 0=x^{2}-3 x-4 \\
& 0=(x-4)(x+1) \\
& x-4=0 \text { or } x+1=0 \\
& x=4,-1
\end{aligned}
$$

check answers: egg: $\ln (x+4)-\ln (x-2)$ $=\ln x$

$$
x=4: \quad \ln 8-\ln 2=\ln 4
$$

$$
\left\{\begin{aligned}
x=-1: & \ln 3-\ln (-3)=\ln (-1) \\
& \text { does not work } \\
\Rightarrow & \text { answer is } x=4
\end{aligned}\right.
$$

Ex 5: Marilyn is saving for her retirement by depositing $\$ 500$ per month into an account earning 5.4% annual interest compounded monthly. The time it takes for such an account to grow to be worth S dollars is given by this equation.

$$
\begin{array}{lll}
t=\frac{1}{12} \log _{\left(1+\frac{r}{12}\right)}\left[\frac{S r}{12 P}+1\right] & r=\text { annual interest rate } & r=0.054 \\
t=\text { time (in years) } & P=\$ 500 \\
& P=\text { monthly payments } & S=2,000,000
\end{array}
$$

How many years will she need to keep making these monthly deposits for the account to be worth two million dollars? $t=$?

$$
\begin{aligned}
& t=\frac{1}{12} \log _{1.0045}\left[\frac{200000(0.054)}{12(500)}+1\right]\left[\begin{array}{r}
+\frac{r}{12}=1+\frac{0.054}{12} \\
\\
=1.0045
\end{array}\right. \\
& t=\frac{1}{12}\left[\frac{\ln 19}{\ln 1.0045}\right] \quad \begin{array}{c}
\frac{2000000(0.054)}{12(500)}+1 \\
=19
\end{array} \\
& t \simeq 54.7 \text { years } \quad
\end{aligned}
$$

