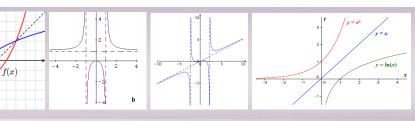
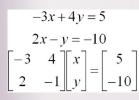


 $f^{-1}(x)$



Math 1050 ~ College Algebra



 $\sum_{k=1}^m k = rac{m(m+1)}{2}$

 $\sum_{k=0}^{n} z^k = rac{1-z^{n+1}}{1-z}$

18 Exponential Equations and Functions

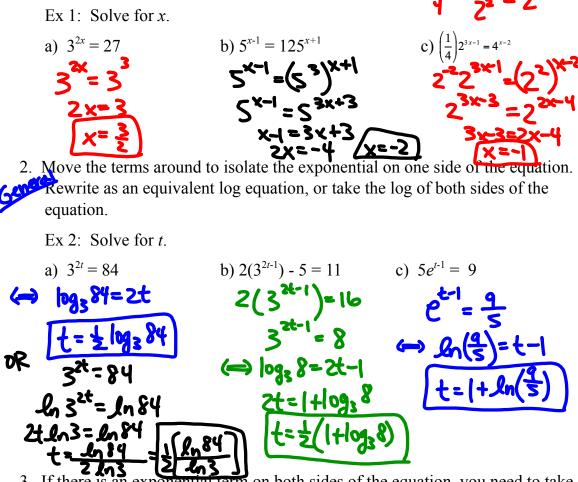
Learning Objectives

- Solve exponential equations.
- Determine x- and y-intercepts of exponential functions.
- Graph exponential functions.
- Solve applications of exponential functions.

Strategy for Solving Exponential Equations

Ex

1. If you can get an exponential equation in the form of $b^n = b^m$, then you may use the one-to-one property, and n = m. $f = \frac{1}{2^2} = \frac{1}{2^2} = 2^2$



3. If there is an exponential term on both sides of the equation, you need to take the log of both sides.

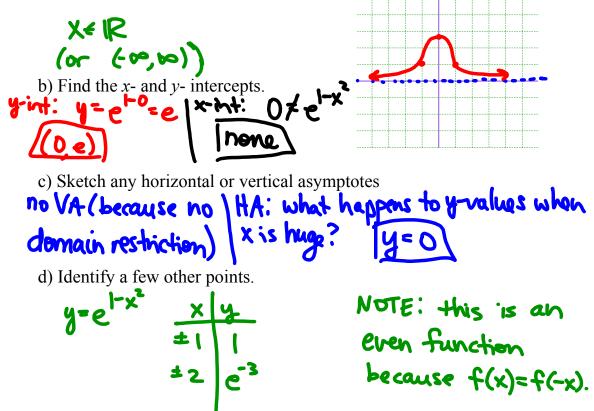
3: Solve for t.
$$5^{1-t} = 12^{t}$$

 $ln 5^{1-t} = ln | 2^{t}$
 $(1-t) ln 5 = t ln | 2$
 $ln 5 - (ln 5)t = (ln 12)t$
 $ln 5 = (ln 5 + ln 12)t$
 $ln 5 = (ln 60)t$
 $ln 5 = (ln 60)t$
 $ln 5 = t$
 $ln 60 \neq ln (5)$
 $ln 60 \neq ln (5)$

Graphing an Exponential Function

Ex 4: Sketch this function by following these steps. $f(x) = e^{(1-x^2)}$

a) Determine the domain.



Application of Exponential Functions

Ex 5: A certain bacteria exhibits a growth according to this equation, $P = 2000e^{2.5t}$ where P is the number present after t hours and the initial number is 2000.

a) How long does it take the population to double? $\xi = ?$ $4000 = 2000e^{2.5t} \rightarrow 1_2 \frac{l_1}{2}$ P=4000 t= <u>ln2</u> ~ 0.27726 2 = e^{2.5} -) after 0.27726 of an hour, ln 2 = 2.St b) When will the population reach 10,000? bacteria has doubled. t=? when P=10000 10000 = 2000e^{2,5t} - after 0.6438 of an hour, population of S=ez.st bacteria has grown to In 5= 2.5t be 10,000 t- <u>h5~</u> 0.6438