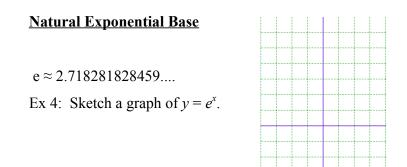


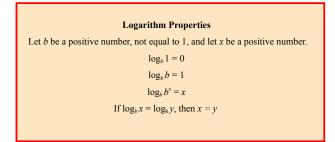
Common and Natural Logarithms

Base 10 is commonly used in logarithms. Thus, when no base is indicated, it is assumed to be base 10.

 $\log x = \log_{10} x$


Ex 1: Evaluate these.

a) $\log 1,000,000$ b) $\log (10^{-3})$ c) $\log 0.01$ d) $\log (a \text{ trillion})$


Another base is the irrational number, *e*, called the natural base. This is written using ln x.

 $\log_e x = \ln x$ Ex 2: Evaluate these.

a) $\ln e$ b) $\ln e^{-3}$ c) $\ln e^{8}$ d) $\ln\left(\frac{1}{e^{5}}\right)$

The exponential base is used in financial and scientific calculations which we will explore in a later chapter.

Ex 5: Evaluate these.						
a) ln 1	b) log 100	c) $\ln e^{\pi}$	d) $\log(10^{0.2})$			

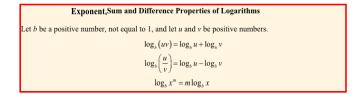
Ex 6: Determine the value of x for each of these.

a) $\log x = \log (y + 5)$ b) $\ln x = \ln (\pi + 1)$

Properties of Logarithms

Change of Base Property
Let a and b be positive numbers, not equal to 1, and let x be a positive number.
$\log_b x = \frac{\log_a x}{\log_a b}$

Ex 7: True or false?
$$\log_2 3 = \frac{\log 3}{\log 2}$$


Ex 8: Use your calculator to give an approximate value for these.

a) log ₂ 5	b) log 50	c) ln 8	d) log ₆ 0.0002
-----------------------	-----------	---------	----------------------------

Inverse Properties		
Let b be a positive number, not equal to 1.		
$b^{\log_b x} = x$, for any positive number x		
$\log_b b^x = x$, for any real number x		

Ex 9: Use the inverse properties to simplify.

a) ln <i>e</i> - 2	b) log ₅ 1	c) $6^{\log_6 20}$	d) $\log_3 3^{10}$
--------------------	-----------------------	--------------------	--------------------

Ex 10: Use these properties to expand these expressions.

a)
$$\log \sqrt{x^2(x+2)}$$
 b) $\ln \left(\frac{x^2-1}{x^3}\right), x > 1$

Ex 11: Use these properties to contract these expressions into a single term.

a)
$$3\log x + 4\log y - 5\log z$$
 b) $\frac{1}{2}[\ln(x+1) + 2\ln(x-1)] - 6\ln x$