

Common and Natural Logarithms

Base 10 is commonly used in logarithms. Thus, when no base is indicated, it is assumed to be base 10 .
$\log x=\log _{10} x$
Ex 1: Evaluate these.
a) $\log 1,000,000$
b) $\log \left(10^{-3}\right)$
c) $\log 0.01$
d) \log (a trillion)

Another base is the irrational number, e, called the natural base. This is written using $\ln \mathrm{x}$.
$\log _{e} x=\ln x$
Ex 2: Evaluate these.
a) $\ln e$
b) $\ln e^{-3}$
c) $\ln e^{8}$
d) $\ln \left(\frac{1}{e^{5}}\right)$

Natural Exponential Base

$$
\mathrm{e} \approx 2.718281828459 \ldots
$$

Ex 4: Sketch a graph of $y=e^{x}$.

The exponential base is used in financial and scientific calculations which we will explore in a later chapter.

Ex 5: Evaluate these.
a) $\ln 1$
b) $\log 100$
c) $\ln e^{\pi}$
d) $\log \left(10^{0.2}\right)$

Ex 6: Determine the value of x for each of these.
a) $\log x=\log (y+5)$
b) $\ln x=\ln (\pi+1)$

Properties of Logarithms

Change of Base Property

Let a and b be positive numbers, not equal to 1 , and let x be a positive number.

$$
\log _{b} x=\frac{\log _{a} x}{\log _{a} b}
$$

Ex 7: True or false? $\log _{2} 3=\frac{\log 3}{\log 2}$

Ex 8: Use your calculator to give an approximate value for these.
a) $\log _{2} 5$
b) $\log 50$
c) $\ln 8$
d) $\log _{6} 0.0002$

Inverse Properties
Let b be a positive number, not equal to 1 .
$b^{\log _{h} x}=x$, for any positive number x
$\log _{b} b^{x}=x$, for any real number x

Ex 9: Use the inverse properties to simplify.
a) $\ln e-2$
b) $\log _{5} 1$
c) $6^{\log _{6} 20}$
d) $\log _{3} 3^{10}$

Exponent,Sum and Difference Properties of Logarithms
Let b be a positive number, not equal to 1 , and let u and v be positive numbers.

$$
\begin{gathered}
\log _{b}(u v)=\log _{b} u+\log _{b} v \\
\log _{b}\left(\frac{u}{v}\right)=\log _{b} u-\log _{b} v \\
\log _{b} x^{m}=m \log _{b} x
\end{gathered}
$$

Ex 10: Use these properties to expand these expressions.
a) $\log \sqrt{x^{2}(x+2)}$
b) $\ln \left(\frac{x^{2}-1}{x^{3}}\right), x>1$

Ex 11: Use these properties to contract these expressions into a single term.
a) $3 \log x+4 \log y-5 \log z$
b) $\frac{1}{2}[\ln (x+1)+2 \ln (x-1)]-6 \ln x$

