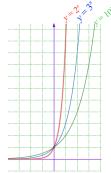
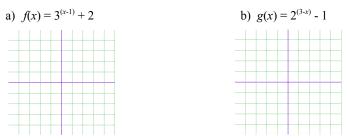


Definition of an Exponential Function

An exponential function is one in which the variable is in the exponent.


 $f(x) = b^x$, where $b > 0, b \neq 1, x \in \mathcal{R}$

Ex 1: Fill out the table and plot the graph of $y = 2^x$.


Horizontal line test

As the base, *b* changes note how little else does.

We can use transformations learned previously to graph variations.

Ex 2: Use transformations to sketch these functions.

Definition of a Logarithm

For y > 0 and b a positive constant other than 1, $\log_b y$ is called a <u>logarithm</u> in base b of y, and is the power of b that gives y.

$$y = \log_b x \Leftrightarrow x = b^{\flat}$$

Ex 3: Find the exact value for each of these.

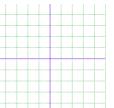
a) $\log_2 16$ b) $\log_{10} 100000$ c) $\log_5 \frac{1}{125}$ d) $\log_8 4$

Ex 4: Convert from logarithmic form to exponential form or visa versa.

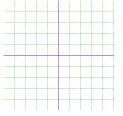
a)
$$9^{3/2} = 27$$
 b) $\log_8 \sqrt{8} = \frac{1}{2}$ c) $\log_{32} 4 = \frac{2}{5}$ d) $10^{-3} = 0.001$

To solve a logarithmic equation, it is convenient to turn it into an exponential equation.

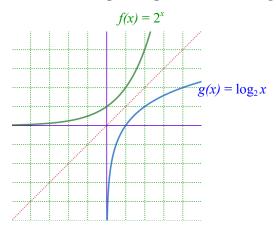
Ex 5: Solve each equation.


a) $\log_2(x-1) = 5$ b) $\log_{10}(3z) = 2$

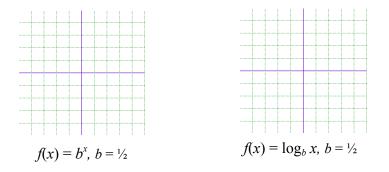
Definition of a Logarithmic Function


 $f(x) = \log_b x$ is a logarithmic function with x > 0, b > 0 and $b \neq 1$.

Ex 6: Fill in the table and sketch a graph of $f(x) = \log_2 x$


	1		
x	f(x)	(x, f(x))	
1/4			_
1/2			
1			
2			
4			

Ex 7: Use transformations to sketch $f(x) = -\log_2(x) + 1$


Relationship of Exponential and Logarithmic Functions

Ex 7: Note the symmetry in the two functions. Compute this.

 $(g\circ f)(x) =$

Ex 8: All of the previous graphs given in this lesson have the characteristic that b > 1. Examine what happens when 0 < b < 1. Sketch below for $b = \frac{1}{2}$.

Properties of Graphs of Logarithmic And Exponential Functions