

Definition of an Exponential Function

An exponential function is one in which the variable is in the exponent.
$f(x)=b^{x}$, where $b>0, b \neq 1, x \in \mathcal{R}$

Ex 1: Fill out the table and plot the graph of $y=2^{x}$.

x	$f(x)$	$(x, f(x))$
-3		
-1		
0		
1		
2		

Notice these things about the graph above.
Domain
Range
y-intercept

Horizontal asymptote
Exponential growth

Horizontal line test

As the base, b changes note how little else does.

We can use transformations learned previously to graph variations.
Ex 2: Use transformations to sketch these functions.
a) $f(x)=3^{(x-1)}+2$
b) $g(x)=2^{(3-x)}-1$

Definition of a Logarithm

For $y>0$ and b a positive constant other than $1, \log _{b} y$ is called a logarithm in base b of y, and is the power of b that gives y.

$$
y=\log _{b} x \Leftrightarrow x=b^{y}
$$

Ex 3: Find the exact value for each of these.
a) $\log _{2} 16$
b) $\log _{10} 100000$
c) $\log _{5} \frac{1}{125}$
d) $\log _{8} 4$

Ex 4: Convert from logarithmic form to exponential form or visa versa.
a) $9^{3 / 2}=27$
b) $\log _{8} \sqrt{8}=\frac{1}{2}$
c) $\log _{32} 4=\frac{2}{5}$
d) $10^{-3}=0.001$

To solve a logarithmic equation, it is convenient to turn it into an exponential equation.

Ex 5: Solve each equation.
a) $\log _{2}(x-1)=5$
b) $\log _{10}(3 z)=2$

Definition of a Logarithmic Function

$f(x)=\log _{b} x$ is a logarithmic function with $x>0, b>0$ and $b \neq 1$.

Ex 6: Fill in the table and sketch a graph of $f(x)=\log _{2} x$

x	$f(x)$	$(x, f(x))$
$1 / 4$		
$1 / 2$		
1		
2		
4		

Ex 7: Use transformations to sketch $f(x)=-\log _{2}(x)+1$

Relationship of Exponential and Logarithmic Functions

Ex 7: Note the symmetry in the two functions. Compute this. $(g \circ f)(x)=$

Ex 8: All of the previous graphs given in this lesson have the characteristic that $b>1$. Examine what happens when $0<b<1$. Sketch below for $b=1 / 2$.

$$
f(x)=b^{x}, b=1 / 2
$$

$$
f(x)=\log _{b} x, b=1 / 2
$$

