

Math 1050 ~ College Algebra

$$
\begin{gathered}
-3 x+4 y=5 \\
2 x-y=-10 \\
{\left[\begin{array}{cc}
-3 & 4 \\
2 & -1
\end{array}\right]\left[\begin{array}{c}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
5 \\
-10
\end{array}\right]}
\end{gathered}
$$

$$
\sum_{k=1}^{m} k=\frac{m(m+1)}{2}
$$

15 Solving Rational Equations and Inequalities

Learning Objectives

- Solve rational equations.
- Solve rational inequalities graphically.
- Solve rational inequalities algebraically.

$$
\sum_{k=0}^{n} z^{k}=\frac{1-z^{n+1}}{1-z}
$$

Solving Rational Equations and Inequalities

Ex 1: For each of these equations, determine the solution from the graph, then do the algebra to arrive at the same answer.
a) $\frac{x^{2}-1}{x+3}=3$

$$
(x-5)(x+2)=0
$$

$$
x-S=0 \text { or } x+2=0
$$

$$
x=5,-2
$$

b) $\frac{x-1}{x+1}=1-x$

$$
\begin{aligned}
& x-1=(1-x)(x+1) \\
& x-1=x+1-x^{2}-x \\
& x^{2}+x-2=0 \\
& (x-1)(x+2)=0 \\
& x-1=0 \text { or } x+2=0 \\
& x=1,-2
\end{aligned}
$$

Ex 2: Determine the solution graphically and algebraically.

$$
\frac{2 x^{2}-8}{x^{2}-9} \leq 0
$$

where are the y-values negative or zero?
graphically: $(-3,-2] \cup[2,3)$
$y=\frac{2 x^{2}-8}{x^{2}-9}$
To solve algebraically
(1) get evengthing on one side of inequality sign, w/ Zero on other side
(2) completely factor
numerator $\{$ denominator
(3) fill in sign line
(x-values that make num. or den. $=0$ go onsign line)
(4) use sign line info to

$$
\begin{aligned}
& \frac{2 x^{2}-8}{x^{2}-9} \leq 0 \\
& \frac{2(x-2)(x+2)}{(x-3)(x+3)} \leq 0 \\
& t_{0}+1+0+\text { sign } \\
& -3-2,-2] \cup(2,3) \\
& \text { s sine }
\end{aligned}
$$

test values:
$0 x=-1000$
(3) $x=-2.5$

$$
\frac{t(-)(-)}{-(-)} \quad \frac{t(-)(-)}{-(t)}
$$

(3) $x=0$
(4) $x=2.5$
(S) $x=1000$ $\frac{+(-x+1)}{-(t)}$

$$
\frac{t(t)(t)}{-(t)} \quad \frac{t(t)(t)}{t(t)}
$$

Ex 3: Solve algebraically.

$$
\begin{aligned}
& \text { a) } \frac{3 x}{x-1} \geq \frac{x}{x+4}+3 \\
& \frac{3 x}{x-1}-\frac{x}{x+4}-3 \geq 0 \\
& \frac{3 x(x+4)}{x-1}(x+1)-\frac{x}{x+4}\left(\frac{x-1}{x-1}\right)-3\left(\frac{(x-1)(x+4)}{(x-1)(x+4)}\right) \geq 0
\end{aligned}
$$

$$
\frac{3 x^{2}+12 x-x^{2}+x-3\left(x^{2}+3 x-4\right)}{(x-1)(x+4)} 20
$$

$$
\frac{2 x^{2}+13 x-3 x^{2}-9 x+12}{(x-1)(x+4)} \geq 0
$$

$$
\frac{-x^{2}+4 x+12}{(x-1)(x+4)} \geq 0
$$

$$
\frac{(-x+6)(x+2)}{(x-1)(x+4)} \geq 0
$$

solution: $(-4,2] \cup(1,6]$

test values:

$$
\begin{aligned}
& \text { test values: } \\
& \begin{array}{l}
0 x=-1000 \frac{t(6)}{-(-)} \text { (2) } x=-3 \frac{t(-)}{-(t)} \\
\text { (11) } x=2 \quad+(t)
\end{array}
\end{aligned}
$$

(3) $x=0 \frac{t(t)}{-(t)}$ (4) $x=2 \frac{t(t)}{t(t)}$

$$
\frac{t(t)}{-(t)} \text { (S) } x=1000 \frac{t(t)}{t(t)} \frac{-(t)}{t(t)}
$$

b) $\frac{(x-2)(x+1)^{2}}{x(x+1)} \geq 0 \quad$ solution: $(-1,0) \cup[2, \infty)$

test values:
(1) $x=-1000$ (2) $x=-\frac{1}{2} \quad \frac{-(t)}{-(t)}$
$\frac{-(t)}{-(-)}$
(3) $x=1 \frac{-(t)}{t(t)}$
(4) $x=1000 \frac{t(t)}{t(t)}$

Ex 4: For each of these inequalities, fill in a sign line.

b) $\frac{3(x+-4)}{(x-1)(x+2)^{2}}=0 \quad[0,1) \cup(1,4]$
c) $\frac{3(x+x)}{(x-1)(x+2) y^{2}}=0[0,1) \cup(1,4]$

d) $3(x-4)=0(-\infty,-2) \cup(-30]$ $\cup(1,4]$

e) $\frac{3 x(x-4)^{2}}{(x-1)^{2}(x+2)^{2}} \leq 0 \quad(-\infty,-2) \cup(-2,0]$

Ex 5: A rectangular parking lot with a perimeter of 360 m is to have an area of at least $8000 \mathrm{~m}^{2}$. Within what bounds must the length of the rectangle be?

$$
\begin{array}{r|l}
2 x+2 y=360 & A=x y \\
x+y=180 & x y \geqslant 8000 \\
y=180-x & \begin{array}{l}
\text { solve for } x .
\end{array}
\end{array}
$$

$$
\begin{aligned}
& x y \geq 8000 \\
& x(180-x) \geq 8000 \\
& 180 x-x^{2} \geq 8000
\end{aligned}
$$

$$
\begin{aligned}
& 0 \geq x^{2}-180 x+8000 \Leftrightarrow x^{2}-180 x+8000 \leq 0 \\
&(x-80)(x-100) \leq 0
\end{aligned}
$$

Solution:
$x \in[80,100]$ maters

