

Math 1050 ~ College Algebra

14 Graphs with Holes and Variations on Asymptotes

Learning Objectives

$\sum_{k=1}^{m} k=\frac{m(m+1)}{2}$
$\sum_{k=0}^{n} z^{k}=\frac{1-z^{n+1}}{1-z}$

- Identify holes in the graph of a rational function.
- Graph rational functions without vertical asymptotes.
- Find slant (oblique) asymptotes.
- Graph rational functions having slant asymptotes.

Since there can be no points on the vertical asymptotes, what happens in an example like this?
Note: To graph a rational $f n$, add to your steps to (1) simplify completely
and (2) find all holes (before finding VA, etc.)
Ex 1: Analyze and graph.

$$
\begin{aligned}
& H(x)=\frac{x-2}{x^{2}-4}=\frac{x-2}{(x-2)(x+2)} \\
& H(x)=\frac{1}{x+2}
\end{aligned}
$$

we lost info that

$$
x \neq 2
$$

hole: $\left(2, \frac{1}{4}\right) \quad y=\frac{1}{2+2}$
VA: $x=-2$

Graphing Rational Functions with No Vertical Asymptotes

Ex 2: Analyze and graph. $H(x)=\frac{2 x+3}{x^{2}+2}$

$V A$: none \#A: $y=0$
no holes
x-int: $\quad 0=2 x+3$
$x=\frac{-3}{2}$
$\begin{aligned} & \text { Hint: } y \\ & \left(0, \frac{3}{2}\right)\end{aligned} \quad \frac{0+3}{0+2}=\frac{3}{2}$

Identifying Slant (Oblique) Asymptotes
Strategy to find SA:
(D) look for HA first.

If there is No HA, then

NOTE: these may or may not be lines. Slant asymptotes describe end behavior, which could be curvy.
(1) do long division (i.e .divide denominator of rational fr into its numerator)
(2) $y=$ result of divisi on WITHOUT remainder is SA.

NOTE: we only took for SA when degree of numerator $>$ degree of denominator.

Ex 3: Analyze and graph.

Ex 4: Analyze and graph.

$$
\begin{gathered}
f(x)=\frac{x^{3}-1}{x-1} \\
f(x)=\frac{(x-1)\left(x^{2}+x+1\right)}{(-1)}
\end{gathered}
$$

$$
f(x)=x^{2}+x+1
$$

hole: $(1,3)$ $y=1^{2}+1+1=3$

vertex:

$$
\begin{aligned}
& x=\frac{-1}{2(1)}=\frac{-1}{2} \\
&\left(-\frac{1}{2}, \frac{3}{4}\right) \\
&\left(\frac{-1}{2}\right)^{2}+\frac{1}{2}+1=\frac{1}{4}+\frac{1}{2} \\
&=\frac{3}{4}
\end{aligned}
$$

