
$-3 x+4 y=5$
$2 x-y=-10$
$\left[\begin{array}{cc}-3 & 4 \\ 2 & -1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}5 \\ -10\end{array}\right]$
$\sum_{k=1}^{m} k=\frac{m(m+1)}{2}$
$\sum_{k=0}^{n} z^{k}=\frac{1-z^{n+1}}{1-z}$

Math 1050 ~ College Algebra

12 Introduction to Rational Functions

Learning Objectives

- Identify a rational function.
- Determine the domain of a rational function.
- Find the x - and y-intercepts for a rational function.
- Identify vertical and horizontal asymptotes.
- Graph irreducible rational functions with constant or first degree numerators and denominators of degree one.

A rational function is a ratio of two polynomial functions.
$f(x)=\frac{N(x)}{D(x)}$ where $\mathrm{N}(x)$ and $\mathrm{D}(x)$ are polynomials.
$N(x)=$ numerator polynomial
$D(x)=$ denominator polynomial

Note: all
polynomials are
a subset of rational frs.

Ex 1: Determine which of these functions are rational functions.
a) $f(x)=\frac{x^{2}+1}{x+4}$
b) $f(x)=\frac{3 x+2}{\sqrt{x}-3}$
both $N(x)$ of $D(x) D(x)$ is NOT a are polynomials polynomial
(No)
c) $f(x)=\frac{x^{2}-2 x-3}{\pi}$
$N(x)$ is 2^{n} dry
polynomial y
$D(x)$ is a O -dog.
polynomial
d) $f(x)=\frac{x^{25}+5}{x^{2}-25}$
$N(x)$ is NOT
a polymenial
(Nb)
Vertical Asymptotes of Simplified Rational Functions

- line $x=a$ where $\mathrm{D}(a)=0$
(i.e. x-values that make
- graph will never cross or touch

$$
D(x)=0)
$$

Ex 2: Find the domain and the vertical asymptotes for these functions.
a) $f(x)=\frac{2 x^{2}}{x^{2}-1}$

c) $f(x)=\frac{x+4}{4 x-2 x^{2}}=\frac{x+4}{2 x(2-x)}$
domain: $x \neq 0,2$ $(-\infty, 0) \cup(0,2) \cup(2, \infty)$
$V A: x=0, x=2$

Horizontal Asymptotes (describe "end" behavior of graph,

- end behavior of the graph \quad i.e. far kft andpr right
- line $y=\mathrm{b}$ where $\lim _{x \rightarrow \infty} f(x)=b$ behavior)
- graph may cross it y-value of $f(x)$ gets super close to b
- depends on degree of $\mathrm{N}(x)$ and $\mathrm{D}(x) y$ at as \mathbf{x} gets huge (+ or
- degree $(\mathrm{N}(x))=\operatorname{degree}(\mathrm{D}(x)), y=y$ ratio of the leading coefficients. ${ }^{-}$)

Ha
Ex 3: Find the horizontal asymptotes of these functions.
a) $f(x)=\frac{2 x^{2}}{x^{2}-1}$
as x gets really huge, what matters most is

b) $f(x)=\frac{3 x}{x^{2}+1}$
as x gets really
huge, this
behaves similar to $\frac{3 x}{x^{2}}=\frac{3}{x}$
(note: thinking is that $\frac{3}{\text { super huge }}$
= super small

$$
\Rightarrow H A: y=0
$$

c) $f(x)=\frac{x+4}{4 x-2 x^{2}}$
$\forall A: y=0$
as x gets super huge, $f(x)$ wile eventually behave like $\frac{x}{-2 x^{2}}=\frac{1}{-2 x}$

$$
\rightarrow 0
$$

Ex 4: For each of these functions, determine the x and y -intercepts, vertical and horizontal asymptotes and draw a quick sketch.
a) $f(x)=\frac{2 x^{2}}{x^{2}-1}$
b) $f(x)=\frac{3 x}{x^{2}+1}$
c) $f(x)=\frac{x+4}{4 x-2 x^{2}}$

VA: $x=1, x=-1$
$A A: y=2$
VA: none (node: this is an even

$H A: y=0$
VA:
(not: this is an odd
$H A: y=0$

$$
\begin{gathered}
\text { tint: } \frac{2 x^{2}}{x^{2}-1}=0 \\
2 x^{2}=0 \\
x=0
\end{gathered}
$$

$$
\text { tint: } \frac{3 x}{x^{2}+1}=0
$$

mint:

$$
3 x=0
$$

$$
\frac{x+4}{4 x-2 x^{2}}=0
$$

$$
x=0
$$

$$
x+4=0
$$

