

$$
\left[\begin{array}{cc}
-3 & 4 \\
2 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
5 \\
-10
\end{array}\right]
$$

$$
\begin{aligned}
& \sum_{k=1}^{m} k=\frac{m(m+1)}{2} \\
& \sum_{k=0}^{n} z^{k}=\frac{1-z^{n+1}}{1-z}
\end{aligned}
$$

Math 1050 ~ College Algebra

11 Polynomial Inequalities

Learning Objectives

- Solve polynomial inequalities graphically.
- Solve polynomial inequalities analytically.

Graphical Interpretations of Equations and Inequalities $\epsilon=$ elementof $U=$ union (or)
Ex 1: Given this graph of $\mathrm{f}(x)$ and $\mathrm{g}(x)$, determine the values of x for which each of these is true.
a) $f(x)=g(x)$
at $x=0$ and $x=3$
b) $f(x)<g(x)$ (line is below
$x \in(-\infty, 0) \cup(3$, Parabola)
c) $f(x)>g(x)$ (line is above $x \in(0,3)$ parabola)

Analytical Solution of Polynomial Inequalities
Ex 2: Given $f(x)=x^{2}-4$ and $g(x)=x+2$, determine the values of x for which each of these is true by doing the math.

$$
\begin{aligned}
& \text { a) } f(x)=g(x) \\
& x^{2}-4=x+2 \\
& x^{2}-x-6=0 \\
& (x-3)(x+2)=0 \\
& x-3=0 \quad x+2=0 \\
& x=3,-2
\end{aligned}
$$

b) $f(x)$

$$
\text { c) } f(x)>g(x)
$$

$x \in(-2,3)$
sign line:

test cases:
(1) $x=-10 \quad f(-10)=100-4=96$
(2) $x=0 \quad \begin{array}{r}g(-10)=-10+2 \\ f(0)=0-4=-4\end{array}$

$$
g(0)=0+2=2
$$

(3) $x=5$

$$
\begin{aligned}
& f(s)=s^{2}-4=21 \\
& g(s)=5+2=7
\end{aligned}
$$

As the functions get more complicated, it is convenient to use a sign line to sort it out.

Directions for Using a Sign Line
a) Write the inequality as a function, f, with zero on the right side.
b) Determine the zeros of f and place them on a number line.
c) Choose a test value in each of the intervals on the number line.
d) Determine the sign of f for each test value, writing that sign above that interval.
e) Your solution is the interval(s) that correspond to the inequality.

Ex 3: Follow the steps above to solve these inequalities.
a) $x^{2}+2 x>3$

b) $-3 x^{2}-2 x \geq-x^{2}+x-2$

$$
\begin{aligned}
& -2 x^{2}-3 x+2 \geq 0 \\
& (2 x-1)(-x-2) \geq 0 \\
& 2 x-1=0 \quad-x-2=0 \\
& x=\frac{1}{2} \quad x=-2 \\
& x \in\left[-2, \frac{1}{2}\right]
\end{aligned}
$$

test x values:

| $(1) x=-1000$ | | |
| :---: | :---: | :---: | :---: |
| (t) | $(-) x=0$ | $\begin{array}{c}(3) x=1000 \\ t(t)\end{array}$ |

Ex 4: Solve this inequality by each method.

$$
(x-1)(x-1)
$$

a) Graphically $(x-1)^{2}-2>-x^{2}+3$
b) Analytically $(x-1)^{2}-2>-x^{2}+3$

we get the same answer \Leftarrow both ways!
Note of warning: graphing doesn't always work so nicely, especially if your x-values are not integers.

$$
\left\lvert\, \begin{aligned}
& x^{2}-x-x+1-2>-x^{2}+3 \\
& 2 x^{2}-2 x-4>0 \\
& 2\left(x^{2}-x-2\right)>0 \\
& 2(x-2)(x+1)>0 \\
& \text { critical values: } x=2,-1 \\
& \text { (A) }
\end{aligned}\right.
$$

test pts:
(1) $x=-1000000$ $-(-)$ $+(4)$
(B) $x=0$ $-(+)$

