

## **Complex Numbers**

The imaginary unit *i* satisfies the following properties:

- $i^2 = -1$
- If c is a real number,  $c \ge 0$  then  $\sqrt{-c} = (\sqrt{c}) \cdot i$

A <u>complex number</u> is a number of the form a + bi where a and b are real numbers and i is the imaginary unit.

The real numbers are a subset of the complex numbers.

The <u>conjugate</u> of a complex number, a + bi is a - bi.

Expressed in symbols,  $\overline{a+bi} = a-bi$ .

Ex 1: Identify *a*, *b* and the conjugate of each of these complex numbers.

|  | a) -2 + 5i | b) 6i | c) 53 | d) π - <i>i</i> |
|--|------------|-------|-------|-----------------|
|--|------------|-------|-------|-----------------|

Arithmetic on these numbers is as expected.

EX 2: Perform these operations on complex numbers.

a) 
$$(1-3i)+(2+5i)$$
 b)  $(1-3i)(2+5i)$  c)  $(1-3i)-(2+5i)$ 

d) 
$$\frac{1-3i}{2+5i}$$
 e)  $\sqrt{-3}\sqrt{-12}$  f)  $\sqrt{(-3)(-12)}$ 

Ex 3: Perform this multiplication.

$$(x-(1+2i))(x-(1-2i))$$

## **Complex Roots of Polynomial Functions**

The Fundamental Theorem of Algebra and Complex Factorization.

If *f* is a polynomial function with degree  $n \ge 1$ :

- *f* has at least one complex zero.
- In actuality, *f* has exactly *n* zeros, counting multiplicities.
- *f* has precisely *n* factors.

Furthermore:

- Complex zeros occur in conjugate pairs.
- Every polynomial can be factored into linear and quadratic factors with real coefficients.

Ex 4: Determine the complex zeros of  $f(x) = 3x^2 - 2x + 2$ .

Ex 5: Given x + 3i is a factor of  $f(x) = 2x^3 - 11x^2 + 18x - 99$ , find all other zeros.

Ex 6: Use the techniques in this section and the last to find all the zeros of  $f(x) = x^5 + 6x^4 + 10x^3 + 6x^2 + 9x$ .