

Complex Numbers

The imaginary unit i satisfies the following properties:

- $i^{2}=-1$
- If c is a real number, $c \geq 0$ then $\sqrt{-c}=(\sqrt{c}) \cdot i$

A complex number is a number of the form $a+b i$ where a and b are real numbers and i is the imaginary unit.
The real numbers are a subset of the complex numbers.
The conjugate of a complex number, $a+b i$ is $a-b i$.
Expressed in symbols, $\overline{a+b i}=a-b i$.

Ex 1: Identify a, b and the conjugate of each of these complex numbers.
a) $-2+5 i$
b) 6 i
c) 53
d) $\pi-i$

Arithmetic on these numbers is as expected.
EX 2: Perform these operations on complex numbers.
a) $(1-3 i)+(2+5 i)$
b) $(1-3 i)(2+5 i)$
c) $(1-3 i)-(2+5 i)$
d) $\frac{1-3 i}{2+5 i}$
e) $\sqrt{-3} \sqrt{-12}$
f) $\sqrt{(-3)(-12)}$

Ex 3: Perform this multiplication.

$$
(x-(1+2 i))(x-(1-2 i))
$$

Complex Roots of Polynomial Functions

The Fundamental Theorem of Algebra and Complex Factorization.
If f is a polynomial function with degree $n \geq 1$:

- f has at least one complex zero.
- In actuality, f has exactly n zeros, counting multiplicities.
- f has precisely n factors.

Furthermore:

- Complex zeros occur in conjugate pairs.
- Every polynomial can be factored into linear and quadratic factors with real coefficients.

Ex 4: Determine the complex zeros of $f(x)=3 x^{2}-2 x+2$.

Ex 5: Given $x+3 i$ is a factor of $\mathrm{f}(\mathrm{x})=2 x^{3}-11 x^{2}+18 x-99$, find all other zeros.

Ex 6: Use the techniques in this section and the last to find all the zeros of $f(x)=x^{5}+6 x^{4}+10 x^{3}+6 x^{2}+9 x$.

