9.5 The Binomial Theorem

* Use the Binomial Theorem to calculate binomial coefficients.
* Use Pascal's Triangle to calculate binomial coefficients.
* Find the nth term in a binomial expansion.

$$
\begin{aligned}
& (3 x-2 y)^{6} \quad!^{1} 1 \\
& \left.(2 x+5)^{8} \rightarrow 6^{6 \pi x}\right|^{\prime}=1
\end{aligned}
$$

What does the word binomial mean?

$$
\begin{aligned}
& 3 x-2 \quad x^{2}+y \quad x-2 y \\
& { }^{(a+b)^{0}}=1 \\
& { }^{(a+b)^{1}}=a+b \\
& { }^{(a+b)^{2}}=a^{2}+2 a b+b^{2} \\
& \left.{ }^{(a+b)^{3}}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}\right)^{4} \\
& (a+b)\left(a^{2}+2 a b+b^{2}\right)=a^{3}+2 a^{2} b+a b^{2} \\
& \frac{a^{2} b+2 a b^{2}+b^{3}}{a^{3}+3 a^{2} b+3 a b^{2}+b^{3}} \\
& (a+b)^{4} \\
& \text { passalis coofficients } \\
& \text { priagle }
\end{aligned}
$$

What does 7 ! mean? 7 Factorial $\rightarrow 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$

Example 1: Determine the value of each of these.
a) $4!=4 \cdot 3 \cdot 2 \cdot 1=24$
b) $10!=10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=3,628,800$
c) $12!/ 10!=\frac{12 \cdot 11 \cdot 10!}{16!}=132$
e) $(n+2)!=n(n-1)(n-2) \cdots 3 \cdot 2 \cdot 1$
f) $0!=(n+2)(n+1) \cdots \cdot 3 \cdot 2 \cdot 1$ $=1$ By def.

Example 2: A pizza shop offers 4 different toppings, Onions, Mushrooms, Pepperoni and Ham. How many 'different' pizzas can you order having none, one, two, three or all four toppings?

$$
\begin{array}{ll}
\} \\
\{0\}\{m\}\{P\}\{H\} \\
\{0, M\}\{0, P\}\{0, H\}\{m, P\}\{m, H\} .\{P, H\} & 6 \\
\{m, P, H\}\{0, P, H\}\{0, m, H\}\{0, m, P\} \\
\{0, m, P, H\}
\end{array}
$$

Combination of n things taken r at a time. What does ${ }_{n} C_{r}$ mean? I have n things, I choose r of them.

$$
\begin{aligned}
&{ }^{n} c_{r}=\frac{n!}{(n-r)!r!}=\binom{n}{r}={ }^{n} C_{r} \\
&=
\end{aligned}
$$

Example 3: Determine the value of each of these and make up a question it might answer.

How many, ways can I select:
${ }_{6} C_{2} \quad \frac{6!}{4!2!}=\frac{6 \cdot 5 \cdot 4!}{4 \cdot \cdot 2}=15$ 2 friends out of 6 to take to dinner.
${ }_{12} \mathrm{C}_{10} \frac{12!}{2!10!}=\frac{12 \cdot 11 \cdot 16!}{2 \cdot 19!}=66$
10 of 12 books to read this summer?
$x_{4} \frac{7!}{3!4!}=\frac{7 \cdot 4 \cdot 5 \cdot 4!}{3 \cdot 2 \cdot 4!}=35$
4 of 7 coins to give away.
${ }_{15} \mathrm{C}_{0}$

$$
\frac{15!}{15!\cdot 0!}=1
$$

o out of 15
Cards to give
away.

Binomial Theorem and Pascal's Triangle

$$
(x+y)^{n}=\sum_{j=0}^{n}\binom{n}{j} x^{(n-j)} y^{j}
$$

othrow $1 \mathrm{patter}^{n}$
(9) Mathematics
$\binom{1}{0} \quad\binom{1}{1}$

$$
1 \begin{gather*}
1 \tag{2}\\
2
\end{gather*}
$$

$$
\begin{equation*}
1331 \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
144^{5} 64 \quad 1 \longleftrightarrow \tag{4}
\end{equation*}
$$

$\begin{array}{lllllll}s_{w} & 1 & 5 & 10 & 10 & 5 & 1\end{array} \longrightarrow$

$$
\begin{aligned}
& \frac{5!}{2!3!}=\frac{5 \cdot 4 \cdot 13^{1}}{2 \cdot j^{\prime}}=10 \\
& \text { So, }(a+b)^{5}= 1 a^{5} b^{0}+5 a^{4} b^{1}+10 a^{3} b^{2}+10 a^{2} b^{3}+5 a^{1} b^{4}+1 a^{0} b^{5} \\
& a^{5}+5 a^{4} b+10 a^{3} b^{2}+10 a^{2} b^{3}+5 a b^{4}+b^{5}
\end{aligned}
$$

Example 4: Expand this binomial. $(2 x-y)^{4}=$

$$
\begin{gathered}
(a+b)^{4}=1 a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+1 b^{4} \\
a=2 x \quad b=-y \\
(2 x)^{4}+4(2 x)^{3}(-y)+6(2 x)^{2}(-y)^{2}+4(2 x)(-y)^{3}+(-y)^{4} \\
16 x^{4}-32 x^{3} y+24 x^{2} y^{2}-8 x y^{3}+y^{4}
\end{gathered}
$$

Example 5: How do we find the $x^{\text {th }}$ term in the expansion of $(2 x-y)^{10}$ without writing the entire expansion?

$$
\begin{aligned}
\binom{10}{4}(2 x)^{6}(-y)^{4}= & \frac{10!}{6!4!}(2 x)^{6}(-y)^{4} \\
& 210 \cdot 64 x^{6} y^{4}=13,440 x^{6} y^{4}
\end{aligned}
$$

Example 6: An interesting application of Pascal's Triangle is in probability. In a family of six children, what is the probability that two are boys and the rest are girls?

$$
\begin{aligned}
& \begin{array}{lllllll}
6 & 15 & 20 & 15 \quad 61 \underset{2 \mathrm{~kg}}{\mathrm{Sum} 2^{6}} \\
64
\end{array} \\
& \left(\begin{array}{l}
6 \\
0
\end{array} \text { bogs }_{b_{5}} b_{y}^{6}\binom{6}{1} \ldots .\right.
\end{aligned}
$$

