9.3 Geometric Sequences and Series

In sections 9.3 you will learn to:

- Recognize, write and find the nth terms of geometric sequences.
- Find the nth partial sums of geometric sequences.
- Find the sums of infinite geometric sequences.
- Use geometric sequences to model and solve real-life problems.

A sequence $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ is said to be geometric is the ratio between consecutive terms remains constant.

Which of these are geometric sequences?

$$
3,1,1 / 3,1 / 9, \ldots \quad 2,4,8,16, \ldots
$$

$$
1,4,9,16, \ldots \quad 3,6,12,24,48, \ldots
$$

Example 1: Suppose $a_{3}=4$ and $a_{7}=1 / 4$ in a geometric sequence.
Find the first seven terms of the sequence.

Example 2:
How would you describe the graph of a geometric sequence?

Example 3:

Suppose a ball is dropped from a height of 9 feet. The elasticity of the ball is such that it bounces up two-thirds of the distance that it has fallen. If this elasticity property remains in effect, how high will the ball bounce after hitting the ground ten times?

A finite geometric series is the sum S_{n} of the first n terms of a finite geometric sequence.

$$
\begin{aligned}
& \quad S n=a_{1}+\left(a_{1} r\right)+\left(a_{1} r^{2}\right)+\left(a_{1} r^{3}\right)+\ldots+\left(a_{1} r^{(n-1)}\right) \\
& S_{n} \text { can be found by computing } S_{n}=\frac{a\left(1-r^{n}\right)}{1-r} .
\end{aligned}
$$

Example 4:

Find a formula for the $\mathrm{n}^{\text {th }}$ partial sum of the geometric series $3+6+12+\ldots$ Use the formula to compute S_{6}.

Example 5:

a) Use the summation notation to write this series, determine a formula for the nth partial sum and find the sixth partial sum using the formula:

$$
S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}
$$

a) $1+0.7+0.49+0.343+\ldots$

There is a mistake in Problem 5b. See if you can
b) $\sum_{j=1}^{10} 2(0.1)^{j}=$
spot it when watching the video. The mistake is corredted in the completed lecture notes.

If the common ratio is between -1 and $1(|r|<1)$ in an infinite geometric series, the sum will converge to a finite sum. This is because r^{n} approaches zero as n increases without bound.

The formula for an infinite sum is:

$$
s_{\infty}=\sum_{j=1}^{\infty} a r^{j}=\frac{a}{1-r}
$$

Where a is the first term, a_{1} and $|r|<1$

Example 6:

Compute the infinite sum of the two previous examples:
a) $1+0.7+0.49+0.343+\ldots$
b) $\sum_{j=1}^{\infty} 2(0.1)^{j}=$

Example 7:

In the example of the bouncing ball dropped from a height of 9 feet and bouncing up twothirds of the previous distance on each bounce, what is the total distance it has traveled after bouncing ten times?

Example 8:

In the last two lessons, you decided to save for your trip to Europe. You opened a savings account with $\$ 1.00$ and on each subsequent day, you deposited a dollar more than on the previous day.

Now you get really brave and each day you deposit twice the amount you did on the previous day, starting with $\$ 1.00$ on day 1 . How much will you deposit on the 30th day? What is the total amount in the account on day 30 ?

