9.2 Arithmetic Sequences and Series

In section 9.2 you will learn to:

- Recognize, write and find the nth terms of arithmetic sequences.
- Find the nth partial sums of arithmetic sequences.
- Use arithmetic sequences to model and solve real-life problems.

$$
\begin{aligned}
& \sum_{\substack{c^{2}!\\
\text { applications }}}^{3,7,10, \ldots, 3 n-2, \ldots}=12
\end{aligned}
$$

A sequence $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ is said to be arithmetic is the difference d between consecutive terms remains constant.

Which of these are arithmetic sequences?

$$
a_{k}-a_{k-1}=d
$$

Example 1:
Find the next three terms of the arithmetic sequence $1,5,9,13,17,21,25, \ldots$ Then, find a formula for the $\mathrm{n}^{\text {th }}$ term and use that to calculate a_{100}.

$$
\begin{array}{ll}
a_{1}=a=1 & a_{n}=a_{1}+(n-1) d \\
d=4 & a_{100}=1+99(4)=1+396=397
\end{array}
$$

How would you describe the graph of an arithmetic sequence?

Example 2:
Suppose the $4^{\text {th }}$ term of an arithmetic sequence is 20 and the $13^{\text {th }}$ term is 65 . What are the first six terms of the sequence?

$$
a_{13}-a_{4}=9 d
$$

Example 3:

A local theatre has a large auditorium with 22 rows of seats. There are 18 seats on Row 1 and each row after Row 1 has two more seats than the previous row. How many seats are in Row 22?

A finite arithmetic series is the sum S_{n} of the first n terms of a finite arithmetic sequence.

$$
S n=a_{1}+\left(a_{1}+d\right)+\left(a_{1}+2 d\right)+\left(a_{1}+3 d\right)+\ldots+\left(a_{1}+(n-1) d\right)
$$

$$
\begin{aligned}
& \underset{\downarrow}{\text { S.jan be found by computing } s_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)} \downarrow \downarrow \downarrow \\
& S_{7}=a_{1}+\left(a_{1}+d\right)+\left(a_{i}+2 d\right)+\cdots \cdot \\
& +-\left(a_{1}+(n-1) d\right) \\
& S_{n}=\left(a_{1}+(n-1) d-1(a+(n-2) d)+\cdots+a_{2}+a_{1}\right. \\
& S_{n}=\left(a_{1}-1 n-1\right) d-1\left(a_{+}+(n-2) d\right)+\cdots \\
& 2 S_{n}=2 a_{1}+(n-1 n)+\left(2 a_{1}+(i-1) d\right)+\left(2 a_{1}+\left(n_{1}-1\right) d\right)+\cdots+\cdots+\left(2 a_{1}+(n-1) d\right) . \\
& 2 S_{n}=n(2 a+(n-1) d) \\
& S_{n}=\frac{n}{2}\left(a_{1}+a_{1}(n-1) d\right)=\frac{n}{2}\left(a_{1}+a_{1}\right)
\end{aligned}
$$

An alternate formula for S_{n} is $\mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}}{2}$ [2a, 2

Example 4:
Use the summation notation to write these series and find the sums using either of the formulas:

$$
\begin{aligned}
& \quad S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& S_{n}=\frac{n}{2}\left[2 a_{1}+(n-1) d\right] \\
& a_{i=1}^{a}\left(1+(i)+3+5+7+9+11+13+15 \cdot(17:)=\frac{9}{2}(1+17)=\frac{9}{8}(48)=81\right. \\
& \sum_{i=1}^{9}((1)
\end{aligned}
$$

$$
\begin{aligned}
& \left(\sum\right)=\frac{n}{29,3)}=\frac{\eta}{2}\left(2 a_{1}+(n-1) d\right)= \\
& a_{1}=12=\frac{30}{2}(2(12)+(29)(3))= \\
& d=3=1665 \\
& \eta=30
\end{aligned}
$$

Example 5:

In the theatre we described previously, there were 22 rows of seating. There were 18 seats on Row 1 and each subsequent row had two more seats than the previous row.

What is the seating capacity of the auditorium?

$$
\begin{array}{ll}
R_{1}=18 & S_{22}
\end{array}=\frac{22}{2}(18+60)=0 \text { R22 }=60 \quad \eta \quad=11 \cdot 78=858 \text { seats }
$$

Example 6:

In the last lesson, you decided to save for your trip to Europe. You opened a savings account with $\$ 1.00$ and on each subsequent day, you deposited a dollar more than on the previous day.

How much have you contributed by the end of one year?

$$
\begin{aligned}
& \frac{1+2+3+\cdots+365}{=}= \\
= & \frac{365}{2}(1+365)= \\
= & \frac{365}{2} \cdot 366=365 \cdot 183=
\end{aligned}
$$

