8.5 Applications of Matrices and Determinants

You will learn to

- Use Cramer's rule to solve a system by determinants.
- Determine the area of a triangle given three vertices on the coordinate plane.
- Write an equation of a line given two points.

Cramer's Rule

$$
\text { If } \begin{aligned}
a x+b y & =c \\
d x+e y & =f
\end{aligned}
$$

We can rewrite this as Cramer's rule:

$$
x=\frac{D_{x}}{D} \quad y=---\frac{D_{y}}{D}
$$

Example 1 Use Cramer's rule to solve this:

$$
\begin{aligned}
& 5 x-2 y=3 \\
& 6 x+4 y=-8
\end{aligned}
$$

Cramer's rule can be used to solve a 3×3 system as well.

Example 2:

Set up the determinants for this system:

$$
\begin{equation*}
D= \tag{0}
\end{equation*}
$$

$$
\begin{aligned}
-y+2 z & =3 \\
4 x+y & =5 \\
x \quad-2 z & =-6
\end{aligned}
$$

$$
D_{x}=
$$

$$
D_{y}=
$$

$$
D_{z}=
$$

Area of a triangle with vertices $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)$

Test for collinearity

Example 2: Determine if these three points are collinear. If not, then find the area of the triangle which has them as the three vertices.
A $(-3,4)$
B $(2,0)$
C $(5,-1)$

Two point form of the equation of a line.

An equation of a line through the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ can be found using determinants.

Example 3: Write an equation of the line through the points $(1,5)$ and $(0,-2)$

