8.3 The inverse of a square matrix

You will:

- Verify that matrices are inverses of each other.
- Determine the inverse of a 2×2 matrix if it exists.
- Use Gauss-Jordan elimination to determine the inverse of a 3×3 matrix.
- Use inverse matrices to solve systems of linear equations.

Let A be an $n \times n$ matrix and I_{n} be the $n \times n$ identity matrix. If there exists a matrix A^{-1} such that

$$
A A^{-1}=I_{n}=A^{-1} A
$$

then A^{-1} is called the inverse of A. The symbol A^{-1} is read A inverse.

$$
A^{-1}
$$

"A inverse"
Example 1:
Which two are inverses?

$$
\left.\left.\begin{array}{l}
A=\left[\begin{array}{cc}
1 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 2
\end{array}\right] \\
A B=\left[\begin{array}{cc}
1 & -1 \\
-1 & 2
\end{array}\right]
\end{array}\right] \begin{array}{ll}
1 & 2 \\
-1 & 1
\end{array}\right]=\left[\begin{array}{ll}
1+1 & 1 \\
1 & 1
\end{array}\right]
$$

Process for finding A^{-1} :

Augment A with I
Perform row operations until the left side of the augmented matrix looks like I.
The right side is A^{-1}

Example 2:

$$
\left[\begin{array}{cc:cc}
1 & 0 & 7 & -2 \\
0 & 1 & -3 & 1
\end{array}\right] \quad A^{-1}=\left[\begin{array}{cc}
7 & -2 \\
-3 & 1
\end{array}\right]
$$

b) Find the inverse if it exists:

$$
\begin{aligned}
& A^{-1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-3 / 1 / 4 & 0 \\
1 / 80 & -1 / 4 & 1 / 5
\end{array}\right]
\end{aligned}
$$

Using Matrix Algebra to solve systems of linear equations.
Example 3:
a) Find A^{-1} :

b) Use the inverse above to solve this system of equations:

$$
\begin{aligned}
& x+2 y+2 z=0 \\
& 3 x+7 y+9 z=1 \\
& -x-4 y-7 z=2 \\
& \left(\begin{array}{llllll}
(2) & (2) & 0 & 1 & -4 & -2 \\
0 & 1 & 0 & : 1 & -5 & -3 \\
0 & 0 & 1 & -5 & 2 & 1
\end{array}\right] \\
& {\left[\begin{array}{ccc:ccc}
1 & 0 & 0 & :-13 & 6 & 4 \\
0 & 1 & 0 & 1 & -5 & -5 \\
0 & 0 & 1 & \vdots & -5 & 2
\end{array}\right]}
\end{aligned}
$$

$$
\begin{aligned}
A^{-1} A X=A^{-1} B & A^{-1} B=\left[\begin{array}{ccc}
-13 & 6 & 4 \\
I X & =A^{-1} B & \xrightarrow{(3 \times 3)(3 \times x+1)} 12 \\
-5 & -5 & -3 \\
-5 & 2 & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right] \\
X=A^{-1} B \quad & =\left[\begin{array}{c}
0+6+8 \\
0+-5+-6 \\
0+2+2
\end{array}\right]=\left[\begin{array}{c}
14 \\
-11 \\
4
\end{array}\right] \\
& {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
14 \\
-11 \\
4
\end{array}\right] } \\
& \Leftrightarrow \begin{array}{l}
x=14 \\
y=-11 \\
z=4
\end{array} \\
& (14,-11,4)
\end{aligned}
$$

