In section 8.2 you will learn to:

- Decide whether two matrices are equal.
- Add and subtract matrices and multiply a matrix by a scalar.

In 8.2 b you will learn to:

- Multiply two matrices.
- Set up an $n \times n$ Identity matrix.

```
    Matrix addition: A + B
    If A=[aij] and B=[\mp@subsup{b}{ij}{}]\mathrm{ , then A+B = [a }\mp@subsup{\textrm{a}}{\textrm{ij}}{}+\mp@subsup{\textrm{b}}{\textrm{ij}}{}]
        A and B must be the same size as is the sum.
        Each element in the sum is the sum of the corresponding elements.
        A+B=
            Scalar Multiplication - A scalar is a real number or constant.
        cA = [ca ij] ie. Every element of A gets multiplied by c.
        cA=
Properties of matrix multiplication:
- A + B = B + A
-A+(B+C)=(A+B)+C
. cd(A) = c(dA)
- 1.A = A
-c(A+B) = CA + CB
- (c+d)A = cA + dA
```

```
Properties of matrix addition and scalar multiplication -
- A + B = B + A
-A+(B+C)=(A+B)+C
- cd(A) = c(dA)
- 1.A = A
- c(A+B) = CA + cB
(c+d)A = cA + dA
\[
A=\left[\begin{array}{ccc}
2 & 1 & -3 \\
3 & -2 & 1 \\
0 & 5 & -2
\end{array}\right] \quad B=\left[\begin{array}{ccc}
0 & -2 & 1 \\
3 & 2 & 5 \\
-1 & 4 & 0
\end{array}\right]
\]
```

Example 1
a) $A+B=$
b) $\mathrm{A}-\mathrm{B}=$
c) $3 A-2 B$

Matrix Multiplication

$$
\begin{aligned}
& \mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right] \text { an } m \times n \text { matrix } \quad \mathrm{B}=\left[\mathrm{b}_{\mathrm{ij}}\right] \text { an } n \times p \text { matrix } \\
& \mathrm{AB}=\left[\mathrm{c}_{\mathrm{ij}}\right] \text { an } m \times p \text { matrix } \\
& \text { where } \mathrm{c}_{\mathrm{ij}}=
\end{aligned}
$$

Example 2: Find $A B$ if possible, then find $B A$

$$
A=\left[\begin{array}{cc}
-1 & 3 \\
4 & -5 \\
0 & 2
\end{array}\right] \quad B=\left[\begin{array}{ll}
1 & 2 \\
0 & 7
\end{array}\right]
$$

Notice: AB \neq BA
$\left[\begin{array}{rr}2 & -1 \\ 3 & 4\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 2 & 3\end{array}\right]=$
$\left[\begin{array}{ll}1 & 0 \\ 2 & 3\end{array}\right]\left[\begin{array}{rr}2 & -1 \\ 3 & 4\end{array}\right]=$

The Identity matrix:

* Must be square
* The diagonal has all 1s $I_{j j}=1$
* Zeros in all other positions ${ }^{j J}$

Notice that $\mathrm{I} \cdot \mathrm{A}=\mathrm{A} \cdot \mathrm{I}=\mathrm{A}$

$$
\left[\begin{array}{ll}
1 & 3 \\
-2 & 5
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\quad\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{rr}
1 & 3 \\
-2 & 5
\end{array}\right]=
$$

Matrix Multiplication Properties:

1. $A(B C)=(A B) C$
2. $A(B+C)=A B+A C$
3. $(A+B) C=A C+B C$
4. $c(A B)=(c A) B=A(c B)$
5. $I \cdot A=A \cdot I=A$

Example 3: Find $A B$ if possible

$$
A=\left[\begin{array}{r}
3 \\
-1 \\
5 \\
4
\end{array}\right] \quad B=\left[\begin{array}{ll}
5 & -3
\end{array}\right]+\left[\begin{array}{ll}
0 & 2
\end{array}\right]+\left[\begin{array}{ll}
4 & -1
\end{array}\right]
$$

Example 4: Find $A B, B A$, and A^{2}, if possible

$$
A=\left[\begin{array}{rr}
1 & -1 \\
2 & 1
\end{array}\right] \quad B=\left[\begin{array}{cc}
1 & 3 \\
-3 & 1
\end{array}\right]
$$

Put this system into matrix algebra form: $\mathrm{A} \cdot \mathrm{X}=\mathrm{C}$
A is the Matrix of coefficients.
X is the matrix of variables.
C is the matrix of constants.

$$
\begin{aligned}
x-y+4 z & =17 \\
x+3 y & =-11 \\
2 y+5 z & =0
\end{aligned}
$$

