CHAPTER 8: MATRICES AND DETERMINANTS

In section 8.1 you will learn to:

- Write a matrix and identify the order.
- Perform elementary row operations on matrices
- Use matrices and Gaussian elimination to solve systems of linear equations.
- Use matrices and Gauss-Jordan elimination to solve systems of linear equations.

We will use matrices to solve linear systems of equations.
system
$3 x-2 y+z=5$
$x+y+2 z=1$
$x+y+2 z=1$
$-x \quad-z=0$
$A=$
coefficient matrix
variable matrix

$X=$
$C=$
constant matrix

Example 1 -- What is the size (order) of these matrices? Are any of them square?
a) $\left[\begin{array}{rrr}-2 & 5 & 1 \\ 7 & 6 & 0\end{array}\right]$
b)

c) $\left[\begin{array}{cc}2 & 3 \\ -1 & 4\end{array}\right]$

Row-echelon form \rightarrow

- Has a leading 1 in every nonzero row
- All entries below the leading 1 are zero.

Reduced row-echelon form \rightarrow

- row-echelon form

Example 2 - Indicate if these matrices are in

- (a) - row-echelon form
(b) - reduced row-echelon form
- © - neither
a) $\left[\begin{array}{lll}2 & 1 & 0 \\ 0 & 1 & 5 \\ 1 & 0 & 0\end{array}\right]$
b) $\left[\begin{array}{rrrr}1 & 5 & 6 & 3 \\ 0 & 1 & 2 & -1\end{array}\right]$
c) $\left[\begin{array}{llll}0 & 0 & 0 & 0 \\ 1 & 2 & 7 & 9 \\ 0 & 1 & 3 & 5\end{array}\right]$
d) $\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 4 \\ 0 & 0 & 1 & 3\end{array}\right]$

Example 3: a) Write the system of equations represented by this augmented matrix.
b) Write this matrix in row-echelon form.
c) Back-substitute to solve.
$\left[\begin{array}{rrrrr}1 & 0 & -3 & : & -2 \\ 3 & 1 & -2 & \vdots & 5 \\ 2 & 2 & 1 & : & 4\end{array}\right]$

