Partial Fraction Decomposition

In this section you will learn to:

- Recognize partial fraction decompositions of rational expressions.
- Find partial fraction decompositions of rational expressions.

Let's add two rational expressions together.

$$
\begin{gathered}
\frac{3}{x-2}+\frac{5}{x+3}=\frac{3}{(x-2)}\left(\frac{x+3}{x+3}\right)+\frac{5}{(x+3)}\left(\frac{x-2}{x-2}\right) \\
L C D=(x-2)(x+3) \left\lvert\,=\frac{3(x+3)+5(x-2)}{(x+3)(x-2)}=\frac{3 x+9+5 x-10}{(x+3)(x-2)}\right. \\
=8 x-1
\end{gathered}
$$

Now, let's undo what we just did. Start with the answer and determine the question.
stent:

$$
\frac{8 x-1}{}=\frac{A}{B}+B \text { if }
$$ if denominator

is linear factor, numerator is a constant

$$
\frac{(x+3)(x-2)(8 x-1)}{(x+3)(x-2)}=\frac{A(x+3)(x-2)}{(x+3)}+\frac{B(x+3)(x-2)}{(x-2)}
$$

simplify: $\quad 8 x-1=A(x-2)+B(x+3)$
this eqn must be true for all x-values so we can plug in specific x values to solve for $A \& B$.

$$
\begin{array}{rlrl}
x=2: & 8(2)-1 & =O A+B(5) \\
15 & =5 B \Rightarrow B=3 \\
x=-3: & 8(-3)-1 & =A(-5)+O B \\
-25 & =-5 A \Rightarrow A=5 \\
& \frac{8 x-1}{(x-2)(x+3)} & =\frac{5}{x+3}+\frac{3}{x-2}
\end{array}
$$

To Decompose $\frac{N(x)}{D(x)}$ into Partial Fractions:
$N(x), D(x)$ both
polynomials

- Divide when improper. (when de gree
- Factor the denominator. of $N(x) \geq$ degree of $D(x)$) (completely)
- Set up appropriate terms as outlined in the following examples.
$\frac{x^{3}+2 x^{2}-x+1}{x^{2}+3 x-4}$ (this is improper)

$$
\begin{aligned}
& \text { (1) } \begin{array}{rl}
x^{2}+3 x-4 & x-1 \\
& \frac{-\left(x^{3}+2 x^{2}+x+1\right.}{\left.3 x^{2}-4 x\right)} \\
\left.\frac{-\left(-x^{2}+3 x+1\right.}{2}-3 x+4\right) \\
6 x-3
\end{array} \\
& \Rightarrow \frac{x^{3}+2 x^{2}-x+1}{x^{2}+3 x-4}=x-1+\frac{6 x-3}{x^{2}+3 x-4}
\end{aligned}
$$

(2) do PFD on remainder rational expression (proper)

$$
\frac{6 x-3}{x^{2}+3 x-4}=\underbrace{\frac{6 x-3}{(x+4)(x-1)}=\frac{A}{x+4}+\frac{B}{x-1}}
$$

multiply both sides by denominator on 6 ft :

$$
6 x-3=A(x-1)+B(x+4) \text { true for all }
$$ x values.

$$
\begin{aligned}
&\left.x=1: \quad \begin{array}{rl}
6(1)-3 & =O A+B(5) \\
3 & =5 B \Rightarrow B=3 / 5 \\
x=-4: & 6(-4)-3
\end{array}\right)=A(-5)+0 \\
&-27=-5 A \\
& A=27 / 5 \\
& \Rightarrow \frac{x^{3}+2 x^{2}-x+1}{x^{2}+3 x-4}=x-1+\frac{27 / 5}{x+4}+\frac{3 / 5}{x-1} \\
&=x-1+\frac{27}{5(x+4)}+\frac{3}{5(x-1)}
\end{aligned}
$$

Distinct Linear Factors
EX 1: Write the partial fraction decomposition of $\frac{x+2}{x^{3}-9 x}$.
(1) it is a proper rational expression (don't need long division)

$$
\begin{aligned}
& \text { (2) } \\
& \frac{x+2}{x\left(x^{2}-9\right)}=\frac{x+2}{x(x-3)(x+3)}=\frac{A}{x}+\frac{B}{x-3}+\frac{C}{x+3} \\
& x+2=A(x-3)(x+3)+B x(x+3)+C(x)(x-3) \\
& x=0: \quad 0+2=A(-3)(3)+O B+O C \\
& 2=-9 A \Rightarrow A=-2 / 9 \\
& x=3: \quad 3+2=O A+B(3)(6)+O C \\
& S=18 B \Rightarrow B=5 / 18 \\
& x=-3: \quad-3+2=O A+O B+C(-3)(-6) \\
& -1=-18 c \Rightarrow c=1 / 18 \\
& \Rightarrow \frac{x+2}{x(x-3)(x+3)}=\frac{-2 / 9}{x}+\frac{5 / 15}{x-3}+\frac{1 / 18}{x+3} \\
& =\frac{-2}{9 x}+\frac{5}{18(x-3)}+\frac{1}{18(x+3)}
\end{aligned}
$$

Repeated Linear Factors
EX 2: Write the partial fraction decomposition of $\frac{2 x-3}{(x-1)^{2}}$.
(1) this is proper rational expression. (no long division)
(2)

$$
\frac{2 x-3}{(x-1)^{2}}=\underbrace{\frac{2 x-3}{(x-1)(x-1)}=\frac{A}{x-1}+\frac{B}{(x-1)^{2}}}
$$

$$
2 x-3=A(x-1)+B
$$

$$
x=1: \quad 2(1)-3=A(0)+B
$$

$$
-1=B
$$

$$
\begin{aligned}
x=0: \quad 2(0)-3 & =A(-1)+B \\
-3 & =-A+-1 \\
-2 & =-A \\
A & =2 \\
\Rightarrow \frac{2 x-3}{(x-1)^{2}} & =\frac{2}{x-1}+\frac{-1}{(x-1)^{2}}
\end{aligned}
$$

Distinct Linear and Quadratic Factors
EX 3: Write the partial fraction decomposition of $\frac{3 x^{2}+4 x+4}{x^{3}+4 x}$.
(proper)

$$
\frac{3 x^{2}+4 x+4}{x\left(x^{2}+4\right)}=\frac{A}{x}+\frac{B x+C}{x^{2}+4}
$$

"prime quadratic factor"

$$
3 x^{2}+4 x+4=A\left(x^{2}+4\right)+(B x+C) x
$$

different technique to find A and B :
"equating like coefficients"

$$
\begin{aligned}
& 3 x^{2}+4 x+4=A x^{2}+4 A+B x^{2}+C x \\
& 3 x^{2}+4 x+4=x^{2}(A+B)+x(C)+(4 A)
\end{aligned}
$$

since this egn must be true for all x values then the $\#$ of x^{2} on Left $=H$ of x^{2} on right, etc.

$$
\begin{gathered}
3=1+B \\
B=2
\end{gathered}
$$

$$
\frac{3 x^{2}+4 x+4}{x^{3}+4 x}=\frac{1}{x}+\frac{2 x+4}{x^{2}+4}
$$

Repeated Quadratic Factors
EX 4: Write the partial fraction decomposition of $\frac{x^{3}-4 x^{2}+2 x-6}{x\left(x^{2}+2\right)^{2}}$.
(proper rational expression)

$$
\begin{aligned}
& \frac{x^{3}-4 x^{2}+2 x-6}{x\left(x^{2}+2\right)^{2}}=\frac{A}{x}+\frac{B x+C}{x^{2}+2}+\frac{D x+E}{\left(x^{2}+2\right)^{2}} \\
& x^{3}-4 x^{2}+2 x-6=A\left(x^{2}+2\right)^{2}+(B x+C)(x)\left(x^{2}+2\right) \\
& +(D x+E) x
\end{aligned}
$$

(use equating like coefficients technique)
combo

$$
\begin{align*}
& x=0: \quad-6=A\left(2^{2}\right)+0+0 \\
& \Leftrightarrow 4 A=-6 \Leftrightarrow A=-3 / 2 \\
& x^{3}-4 x^{2}+2 x-6=\frac{-3}{2}\left(x^{2}+2\right)^{2}+\left(B x^{2}+\alpha\right)\left(x^{2}+2\right)+D x^{2}+E x \\
& x^{3}-4 x^{2}+2 x-6=-\frac{3}{2}\left(x^{4}+4 x^{2}+4\right)+B x^{4}+2 B x^{2}+C x^{3}+2 C x \\
& +D x^{2}+E x \\
& 0 x^{4}+x^{3}-4 x^{2}+2 x-6=x^{4}(B-3 / 2)+x^{3}(C)+x^{2}\left(\frac{-3}{2}(4)+2 B+D\right) \\
& +x(2 C+E)+\left(\frac{-3}{2}(4)\right) \\
& x^{4} \quad x^{3} \\
& 0=B-3 / 2 \quad 1=C \quad-4=-\frac{3}{2}(4)+2 B+D \quad \begin{array}{l}
2=2 C+E \\
2=2+E
\end{array} \\
& B=3 / 2 \longrightarrow-4=-6+2(3 / 2)+D \quad E=0 \\
& -4=-6+3+D \text { cost } \\
& D=-1 \\
& -6=-6 \\
& \frac{x^{3}-4 x^{2}+2 x-6}{x\left(x^{2}+2\right)^{2}}=\frac{-3 / 2}{x}+\left(\frac{2}{2}\right)\left(\frac{(2) x+1}{x^{2}+2}\right)+\frac{-1 x+0}{\left(x^{2}+2\right)^{2}} \\
& =\frac{-3}{2 x}+\frac{3 x+2}{2\left(x^{2}+2\right)}-\frac{x}{\left(x^{2}+2\right)^{2}}
\end{align*}
$$

