In section 7.3 you will learn to:

- Use back substitution to solve linear systems in row-echelon form.
- Use Gaussian elimination to solve systems of linear equations,
- Solve non-square systems of linear equations.
- Model and solve real-life problems by setting up systems of linear equations in three or more variables.

Multivariable linear systems

An equation with three variables represents what?

Method of Gaussian Elimination -- You may:

- Exchange two rows.
- Multiply a row by a nonzero constant.
- Temporarily multiply a row by a nonzero constant, add it to another row and replace one of the rows with the result.

Example 1

$x-y+z=4$

保
Exchange rows
Multiply row
Multiply row, add
$x+3 y-2 z=-3$
$3 x+2 y+2 z=6$

Example 2 Solve

$$
\begin{array}{r}
x-2 y+z=4 \\
3 x-6 y+3 z=7 \\
2 x+y+4 z=2
\end{array}
$$

$$
\begin{aligned}
x-2 y-z & =-5 \\
2 x+y+z & =5
\end{aligned}
$$

Example 4

Find the equation of the parabola $y=a x^{2}+b x+c$ that passes through the points $(0,3), \quad(1,4)$ and $(2,3)$.

