Solving Exponential and Logarithmic Equations

In section 3.4 you will learn to:

- Solve simple exponential and logarithmic equations.
- Solve more complex exponential and logarithmic equations.
- Use exponential and logarithmic equations to model and solve real-life problems.

An exponential equation has a variable in the exponent:

$$
4^{x+1}=16^{x-1}
$$

To solve this one, make the bases alike.

Exponential functions are one-to-one, so when the bases are the same,the exponents are equal.

Some exponential equations can be solved by factoring:
$e^{2 x}+e^{x}-6=0$

More exponential equations: When solving for an exponent, it is often necessary to take the log of both sides of the equation.
a) $3^{t}=8$
b) $2\left(3^{2 t-5}\right)-4=11$
c) $5^{1-x}=12^{x}$

A logarithmic equation has a variable inside a logarithm. They typically require us to apply the properties of logarithms discussed in section 3.
a) $\log (1+3 x)=3$
b) $\ln x+\ln (x-3)=\ln (2 x)$

Applications: Growth and Decay

Example 1:

A woman invests $\$ 25,000$ in a savings account that compounds interest quarterly at a rate of 4%. How long will it take for the money to double?

Example 2:

The population of a colony of bacteria is measured to be 2000. Three hours later the population has grown to 3300 . Assuming the population grows "exponentially" (compounding continuously) what should the population be after 10 hours?

Example 3:

The half-life of a certain isotope of radium is 1600 years. What percentage of a sample of the isotope will still be radioactive after 500 years?

