3.3 Properties of Logarithms

Properties of Logarithms

In section 3.3 you will learn to:

- Use properties to evaluate or rewrite logarithmic expressions.
- Use properties of logarithms to expand or condense logarithmic expressions.
- Use the change of base formula to rewrite and evaluate logarithmic expressions.
- Use logarithmic functions to model and solve real-life problems.
3.3 Properties of Logarithms

Properties of Logarithms

Your calculator has only two keys that compute logarithmic values.

Suppose you need to compute a logarithm in some other base, a

Change of base formula:

$$
\log _{a} x=\frac{\log _{b} x}{\log _{b} a}
$$

Examples: $\log 254=\frac{\log 254}{\log _{00} 2} \cong 7.989$
${ }^{\text {bl) } \log _{6} 0.008} \frac{\ln 0.008}{\operatorname{li} 6} \cong-2.695$

$$
\log _{6} 0.008=\frac{\log 0.008}{\log _{\log } 6} \cong-2.695
$$

3.3 Properties of Logarithms

Since a logarithm is an exponent, the properties of logarithms are just like the properties of exponents.

Exponents

$$
a^{0}=1
$$

$$
a^{1}=a
$$

Logarithms

$$
\log _{a} 1=0
$$

$$
\log _{a} a=1
$$

Product: $\quad a^{m} \cdot a^{n}=a$
Quotient: $\quad \frac{a^{n}}{a^{n}}=a^{m-n}$

$$
a^{m} \quad m-n
$$

Power:

$$
m+n
$$

Product:

orationeremopenesess $\log _{\mathrm{log}_{a}} x=\log _{a} y \Longrightarrow x=y$

Let's apply the properties of logarithms.
a) $\log _{4} 5+\log _{4} 6=\log _{4} 30$
b) $\log (12 a)-\log (2 a)=\log _{j}\left(\frac{12 a}{2 a}\right)=\log 6$
c) $\begin{aligned} \log _{4} x^{4} & =4 \log _{4} x \\ & =\operatorname{lo}_{4}\end{aligned}$
d) $\underline{e}^{\ln (5 x)}=5 x$

$$
\begin{aligned}
\text { e) } \log 10^{(x+2)} & =(x+2) \log 10=x+2 \\
\log _{10} 10 & =x+2
\end{aligned}
$$

3.3 Properties of Logarithms

In solving equations, it will be helpful to expand and condense logarithmic expressions.

Expand these:

(1) $\frac{\sqrt{3,5}}{T}=\ln \sqrt{3 x-5}-\ln 7=$

$$
=\frac{1}{2} \ln (3 x-5)-\ln 7 .
$$

Condense these into a single logarithmic expression:
a) $1 / 2 \log x+3 \log (x+1)=\log x^{1 / 2}+\log (x+1)^{3}=$

$$
=\log \left(\sqrt{x}(x+1)^{3}\right)
$$

b) $2 \ln (x+2)-\ln x=\ln (x+2)^{2}-\ln x=$

$$
=\ln \frac{(x+2)^{2}}{x}
$$

Suppose we know that $\log _{b} 2=0.41$ and $\log _{b} 3=0.54$, use the properties of logarithms to find:
a) $\log _{b} 6=\log _{b}(2 \cdot 3)=\log _{b} 2+\log _{b} 3=$

$$
=0.41+0.54=0.95
$$

$$
\left(9=3^{2}\right)
$$

b) $\log _{b} 29=\log _{b} 2-\log _{b} 9=\log _{b} 2-2 \log _{b} 3=$

$$
\begin{aligned}
& =0.41-2(0.54)=0.41-1.0)^{2}=-0.67 \\
& b
\end{aligned}
$$

c) $\log _{b} 8 \sqrt{3}=\log _{b} 8+\log _{b} \sqrt{3}=$

$$
\begin{aligned}
& =\log _{b}\left(2^{3}\right)^{3}+\log _{b} 3^{1 / 2}= \\
& =3 \log _{b} 2+\frac{1}{2} \log _{b} 3=3(0.41)+\frac{1}{2}(0.54)= \\
& =1.23+0.27=1.50
\end{aligned}
$$

3.3 Properties of Logarithms

Logarithms are useful in reporting a broad range of data by converting it into a more manageable form. Consider the intensity of earthquakes.

Let $\mathrm{I}_{0}=$ the intensity of a "standard" earthquake that is agreed upon as minimal (barely detectable.)

Let $\mathrm{I}=$ The intensity of a much larger earthquake.

The magnitude M of the latter quake I relative to I_{o} is defined by

$$
\mathrm{M}=\log \frac{\mathrm{I}}{\mathrm{I}_{\mathrm{o}}}
$$

You may have heard of the Richter scale that measures the intensity of an earthquake.

What is the magnitude M of an earthquake measured to be 10.000 times more intense than a standard quake? $\quad I_{0} \quad I=10,000 I_{0}$

$$
M=100 \frac{10.000 \mathrm{~T} / 0}{70}=\log 10.000=4.0
$$

Example:
On October 17, 1989 a major earthquake struck the San Francisco Bay area only minutes before Game 3 of the World Series in Candlestick Park. Its intensity was measured as 7.I on the Richter scale.

How many times more intense was it than a minimal quake?
a) 12, 500 times more intense?
b) 1,250,000 time more intense?
c) 12.500 .000 times more intense?

