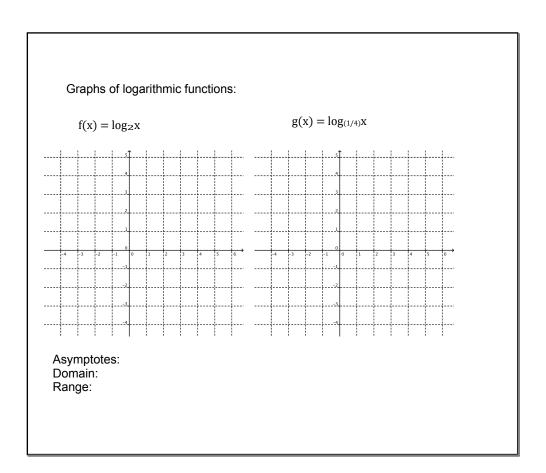
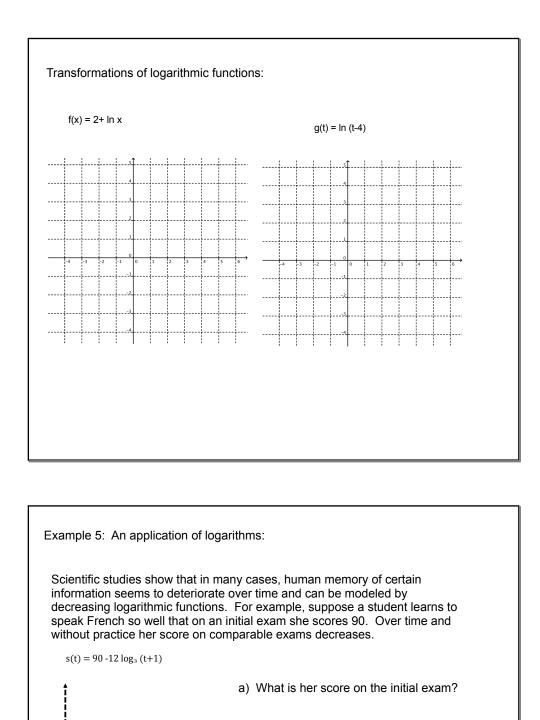

Logarithmic Functions and Their Graphs

- In section 3.2 you will learn to:Recognize, evaluate and graph logarithmic functions with whole number bases.
- Recognize, evaluate and graph natural logarithmic functions.
- Evaluate logarithms without using a calculator.
- Use logarithmic functions to model and solve real-life problems.


Evaluating logarithmic functions:		
Exponential form is equivalent to	logarithmic form	
b×=y	log _b y=x	
8-1=1/8	$\log_{8}(1/8)=-1$	
Example 1: Notice that a logarithm is always equal to an exponent.		
Determine the answer and write eac	ch one in the other form.	
$10^4 =$		
$\log_3(1/27) =$		
$(9/100)^{-1/2} =$		
$\log_2(2\sqrt{2}) =$		
$\log_5(1) =$		




```
Evaluating logarithmic expressions on a calculator:Base 10 logarithms are called common logarithms. They are written<br/>(without base) as \log x = \log_{10} x.\log 100 =\log .001 =\log (1) =log 15 is asking the question, 10 to what power will yield 15?<br/>Your calculator will tell you this is about 1.176.Base e logarithms are called natural logarithms. They are<br/>written as \log_e x = \ln x ( the natural log of x.) You may want to<br/>write them as an exponential expression to evaluate these.\ln (e^3) =\ln (1/e) =\ln (10) is asking what power of e will yield 100.<br/>Your calculator will tell you this is about 4.605
```

Example 3: Jse a calculator to evaluate these logs to four significant digits:	
log 72 =	
log10 0.000387 =	
ln 218 =	
$\log_{e} 10 =$	
Do these without a calculator, then check with a calculator.	
log 100 =	
ln e ⁵ =	
log 0 =	
ln 1 =	

Four initial properties of logarithms:
1. log _a 1 = 0
2. log _a a = 1
3. $\log_a a^x = x$ Inverse property
4. If $\log_a x = \log_a y$, then $x = y$ One-to-one property
Example 4: Evaluate these:
log ₅ 1 =
log ₆ 6 =
log ₂ 2 ^{1.7} =
$\ln e^{12} =$
Finally, suppose $\log_3 x = \log_3 100~$. What can you conclude?

b) What is her score after 2 days? After 8 days?