Logarithmic Functions and Their Graphs

In section 3.2 you will learn to:

- Recognize, evaluate and graph logarithmic functions with whole number bases.
- Recognize, evaluate and graph natural logarithmic functions.
- Evaluate logarithms without using a calculator.
- Use logarithmic functions to model and solve real-life problems.

Review: Exponential Functions

$$
f(x)=2^{x}
$$

What is the inverse of this function?

domain: $x \in \mathbb{R}$

$$
(-\infty, \infty)
$$

range. $y>0$

$$
(0, \infty)
$$

Evaluating logarithmic functions:
Exponential form is equivalent to logarithmic form

$$
\mathrm{b}^{\mathrm{x}}=\mathrm{y} \quad \Longleftrightarrow \quad \log _{\mathrm{b}} \mathrm{y}=\mathrm{x}
$$

analogy
prompt:
$\log _{b y} y=x$ " b to what power gives y ?"1
ex

$$
\begin{aligned}
& 8^{-1}=1 / 8 \\
& b=8, x-1, y=1 / 8
\end{aligned} \Longleftrightarrow
$$

Example 1: Notice that a logarithm is always equal to an exponent.
Determine the answer and write each one in the other form.

$$
\begin{aligned}
& 10^{4}=10,000 \quad \Longleftrightarrow \log _{10} 10000=4 \\
& \begin{aligned}
& \log _{3}(1 / 27)=7 \\
&=-j
\end{aligned} \Leftrightarrow 3^{?}=\frac{1}{27} \quad ?=-3 \\
& (9 / 100)^{-1 / 2}=\left(\frac{9}{100}\right)^{-1 / 2}=\left(\frac{100}{9}\right)^{1 / 2}=\sqrt{\frac{100}{9}}=\frac{10}{3} \\
& \log _{2}(2 \sqrt{2})=\log _{2}\left(2 \cdot 2^{1 / 2}\right) \Leftrightarrow \log _{9 / 00}\left(\frac{10}{3}\right)=-\frac{1}{2} \\
& \log _{5}(1)==\log _{2}\left(2^{3 / 2}\right)=\frac{3}{2} \Leftrightarrow 2^{3 / 2}=2^{3 / 2} \\
& ?=0 \\
& \Leftrightarrow s^{3}=1 \quad ?=0 \quad s^{0}=1
\end{aligned}
$$

Example 2: Find the value of $\mathrm{F}(\mathrm{x})$ in each of the following if $\mathrm{F}(\mathrm{x})=\log _{8} \mathrm{x}$
a) $F(8)=\log _{8} 8=1$
b) $F(64)=\log _{8}(64)=2 \quad\left(8^{2}<64\right)$
c) $F\left(8^{10}\right)=\log _{8}\left(8^{10}\right)=10$
d) $F(2)=\log _{8}(2)=\log _{8}(\sqrt[3]{8})=\log _{8}\left(8^{1 / 3}\right)=\frac{1}{3}$
e) $F(0)=\log _{8}(0)$

* $8^{?}=0$
undefined
no answer

Evaluating logarithmic expressions on a calculator:

Base 10 logarithms are called common logarithms. They are written (without base) as $\log \mathrm{x}=\log _{10} \mathrm{x}$.

$$
\begin{aligned}
& \log 1000=\log _{10} 10^{3}=3 \\
& \log .001=\log _{1000} \frac{1}{10}=\log 10^{-3}=-3 \\
& \log (1)=0
\end{aligned}
$$

$\log 15$ is asking the question, 10 to what power will yield $15 ?$
Your calculator will tell you this is about 1.176.

Base e logarithms are called natural logarithms. They are written as $\log _{e} x=\ln x$ (the natural \log of x.) You may want to write them as an exponential expression to evaluate these.

$$
\begin{aligned}
& \ln \left(\mathrm{e}^{3}\right)=3 \\
& \ln (1 / e)=\ln \left(e^{-1}\right)=-1 \\
& \ln \left(\mathrm{e}^{0}\right)=\ln (1)=0
\end{aligned}
$$

$\ln (100)$ is asking what power of e will yield 100. Your calculator will tell you this is about 4.605

Example 3:

Use a calculator to evaluate these logs to four significant digits:

```
log}72\simeq1.85
log}100.000387\cong-3.41
ln}218=5.38
loge}10\cong2.30
```

Do these without a calculator, then check with a calculator.

$$
\begin{aligned}
& \log 100=2 \\
& \ln \mathrm{e}^{5}=5 \\
& \left\{\begin{array}{l}
\log 0=? \\
\text { under fined } \\
\ln 1=
\end{array} \Leftrightarrow 10^{?}=0\right.
\end{aligned}
$$

Four initial properties of logarithms:

1. $\log _{a} 1=0 \quad$ (because $a^{0}=1, a \neq 0$)
2. $\log _{a} a=1$ (because $a^{\prime}=a$)
3. $\log _{a} a^{x}=x$ Inverse property (because $a^{x}=a^{x}$) (\log base a "undoes" exponential with base a)
4. If $\log _{a} x=\log _{a} y$, then $x=y \quad$ One-to-one property

Example 4: Evaluate these:

$$
\begin{aligned}
& \log _{5} 1=0 \\
& \log _{6} 6=1 \\
& \log _{2} 2^{1.7}=1.7 \\
& \ln e^{12}=12
\end{aligned}
$$

Finally, suppose $\log _{3} x=\log _{3} 100$. What can you conclude?

$$
x=100
$$

general shape $y=\log _{a} x$
Graphs of logarithmic functions:

$$
\left.\mathrm{f}(\mathrm{x})=\log _{2 \mathrm{x}} \quad \begin{gathered}
x \\
2
\end{gathered} \right\rvert\,
$$

$$
g(x)=\log _{(1 / 4)} x
$$

Asymptotes: VA: $X=0$
Asymptotes:
Domain: $x>0$ (or $(0, \infty)$)
Range:
Range: $\quad y \in \mathbb{R}$
(or $(-\infty, \infty)$)

Transformations of logarithmic functions:

domain: $t>4$

$$
\begin{gathered}
g(t)=\ln (t-4) \\
t-4>0 \\
t>4
\end{gathered}
$$

Example 5: An application of logarithms:

Scientific studies show that in many cases, human memory of certain information seems to deteriorate over time and can be modeled by decreasing logarithmic functions. For example, suppose a student learns to speak French so well that on an initial exam she scores 90 . Over time and without practice her score on comparable exams decreases.

$$
\begin{array}{ll}
\begin{array}{l}
s(t)=90-12 \log _{3}(t+1) \\
s(k)
\end{array} & \text { a) What is her score on the initial exam? } \\
& S(0)=90-12 \log _{3}(0+1) \\
\end{array}
$$

b) What is her score after 2 days? After 8 days?
after 2 days, $t=2$

$$
(0,90) \quad(3,78) \quad(8,66)
$$

$$
\begin{aligned}
s(2) & =90-12 \log _{3}(3) \\
& =90-12(1)=78 \\
s(8) & =90-12 \log _{3}(9) \\
& =90-12(2)=66
\end{aligned}
$$

