2.6 RATIONAL FUNCTIONS

In this section you will learn how to:

- Find the domain of rational functions
- Find horizontal, vertical and slant asymptotes of rational functions
- Analyze and sketch the graph of a rational function
- Use rational functions to model and solve real-life problems

$\begin{array}{ll}\text { A rational function is } & Q(x)=\frac{N(x)}{D(x)} \\ Q(x) \frac{3 x-2}{x^{2}+5} & P(x)=\frac{x^{2}+V}{5} \text { Not }\end{array}$
where $N(x)$ is a polynomial function of any degree and
$D(x)$ must be a polynomial of degree 1 or greater.

$$
F(x)=\frac{3}{x-1}
$$

The Numerator determines the roots and the Denominator determines the vertical asymptotes.

Vertical Asymptotes are caused by zero values in the denominator.

A look at $y=\frac{1}{x} \quad$ and some transformations

Vertical asymptote $\quad t=-2 \quad t=3$

$y=\frac{2 x-3}{(x-1)(x+2)}$

$$
y=\frac{2 x(x+2)}{(x-1)(x+3)}
$$

vertical asymp.
$D(x)=0$
Set. Denom $=0$
Solve

The numerator tell us the roots (x-intercepts) of the function.
To find the y-intercept, let $x=0$.

$$
\text { Roots (} x \text {-intercepts) } N(x)=0
$$

$$
\begin{aligned}
& y=\frac{2 x-3}{(x-1)(x+2)} \\
& x=0 \Rightarrow y=\frac{-3}{(-1)(2)}=\frac{3}{2}
\end{aligned}
$$

$$
y=\frac{2 x(x+2)}{(x-1)(x+3)} \quad \frac{0(2)}{(-1)(3)}=\frac{0}{-3}=0
$$

End behavior is determined by the quotient of the leading terms.

$$
\begin{array}{ll}
y=\frac{2 x}{x^{2}}=\frac{2}{x} & y=\frac{2 x^{2}}{x^{2}}=2 \\
y=\frac{2 x)-3}{(x-1)(x+2)} & y=\frac{2 x(x+2)}{(x-1)(x+3)} \\
\text { CB: HA } y=0 & \text { CB } y=2
\end{array}
$$

How do we know what the function looks like? We need to make a sign line:
2.6 Rational Functions

What happens if there is a common factor in the numerator and the denominator?

$$
\begin{aligned}
& y=\frac{x^{3}-3 x^{2}+2 x}{x^{2}-1} \\
& y=\frac{x\left(x^{2}-3 x+2\right)}{(x-1)(x+1)} \\
& y=\frac{x(x-2)(x-2)}{(x-1)(x+1)}
\end{aligned}
$$

hole in the function:
ar $x=1 \quad \frac{1(-1)}{2}=-\frac{1}{2} \quad\left(1,-\frac{1}{2}\right)$
Roots: $x=0 \quad x-2=0$
$(0,0) \quad(2,0)$

y-int $x=0 \quad \frac{0(-2)}{1}-0$
v. Asymptotes Denom $=0$

$$
x+1=0 \quad x=-1
$$

End Behavior $y=\frac{x^{2}-2 x}{x+1} \quad x+1 \frac{x-3}{\frac{x^{2}-2 x}{x^{3}+x}}$
asymptote $y=x-3 \quad \begin{aligned} & 0-3 x \\ & 0\end{aligned} \quad \begin{aligned} & \text {-3x-3}\end{aligned}$

$$
y=\frac{(x+2)(x-1)(2 x+6)}{(x-1)(x+4)(x-3)}
$$

IN SUMMARY:

Factor numerator and denominator

Reduce any common factors and note the holes) in the function.

$$
\frac{3-8}{5 \cdot(-2)}=\frac{24}{10}=-2.4 \text { hole }(1,-24)
$$

$$
\begin{aligned}
& \text { Make a sign line: }
\end{aligned}
$$

