2.5 Finding the zeros of polynomial functions

We will learn how to:

- Determine the number of zeros of polynomial functions
- Find rational zeros of polynomial functions
- Find conjugate pairs of complex zeros
- Find zeros of polynomials by factoring
- Write a polynomial function given the roots.

$$
P(x)=a_{1} x^{n}+a_{2} x^{n-1}+\ldots+a_{n-1} x+a_{n}
$$

Factored form $a\left(x-r_{1}\right)\left(x-r_{2}\right) \ldots\left(x-r_{n}\right)$

The roots are $r_{1}, r_{2}, \ldots, r_{n}$

Rational Root Theorem:

$P(x)=(2 x-5)(3 x+2)(x-1) \quad$ Has roots:
$P(x)=6 x^{3}-17 x^{2}+x+10 \quad$ set of $p_{s}:$
set of q :
$P(x)$ must have integer coefficients.

If $P(x)$ has any rational roots, they will be of the form: p / q where p and q have no common factors other than 1 and where p is a factor of the constant term and q is a factor of the leading coefficient.

This allows us to attempt to break higher degree polynomials down into their factored form and determine the roots of a polynomial.

Example 1: Factor completely and determine the roots of this polynomial.

$$
P(x)=x^{3}+3 x^{2}+x-2
$$

1) set of p_{s}
2) set of q_{s}
3) possible roots of $P(x)$
4) Test each possible root using synthetic division:

Example 2: Find the roots and write in factored form:
$y=9 x^{4}-3 x^{3}+x^{2}-8 x+4$

Example 3:

Determine the roots and write in factored form:

$$
y=x^{3}-7 x-6
$$

Notice: as soon as you can get the factored form down to a quadratic, use the quadratic formula to find the other two roots.
They may be complex.
Complex roots will come in conjugate pairs. If a + bi is a root, then a - bi will be a root if the polynomial has integer coefficients.

Example 4: Factor and determine the roots:

$$
y=x^{3}+4 x^{2}+14 x+20
$$

Example 5:

Write a polynomial function with real coefficients of degree 4 which has these roots:
$2 \mathrm{i},-3,1$

