2.5 Finding the zeros of polynomial functions

We will learn how to:

- Determine the number of zeros of polynomial functions
- Find rational zeros of polynomial functions
- Find conjugate pairs of complex zeros
- Find zeros of polynomials by factoring
- Write a polynomial function given the roots.

$$
P(x)=\underbrace{\downarrow}{ }^{\underline{a_{1}} x^{\frac{\downarrow}{n}}+\underline{a}_{2} x^{\frac{\downarrow}{-1}}+\ldots+a_{n-1} x+a_{n}}
$$

Factored form $a\left(x-r_{1}\right)\left(x-r_{2}\right) \ldots\left(x-r_{n}\right)$ \downarrow

The roots are $r_{1}, r_{2}, \ldots, r_{n}$

Rational Root Theorem:

$$
\begin{aligned}
& x \text {-int } \\
& \text { zeros } \\
& 5 / 2-2 / 3 \quad 11 \\
& \text { roots } \\
& \sim P(x)=(2 x-5)(3 x+2)(x-1)=0 \quad \text { Has roots: } x=\frac{5}{2} ; \frac{-2}{3}, 1 \\
& \checkmark P(x)=\stackrel{+}{6} x^{3}-17 x^{2}+x+(10) \\
& \text { selof } \pm\{1,2,5,10\} \sim \\
& \text { set of } \text { Q } \pm\{1,2,3,6\} \sim \\
& P(x) \text { must have integer coefficients. }
\end{aligned}
$$

$$
\text { Poss,ble: } \pm\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{6}, 2, \frac{2}{3}, 5,5,5,5,5,10,10, \frac{10}{3}\right\}
$$

If $\mathrm{P}(\mathrm{x})$ has any rational roots, they will be of the form:(019) where p and q have no common factors other than 1 and where p is a factor of the constant term and q is a factor of the leading coefficient.

This allows us to attempt to break higher degree polynomials down into their factored form and determine the roots of a polynomial.

Example 1: Factor completely and determine the roots of this polynomial.

$$
\begin{aligned}
& \pm 1 \\
& P(x)=x^{3}+3 x^{2}+x-2^{ \pm\left\{1_{1}^{2}\right\}}
\end{aligned}
$$

1) set of $p_{s} \pm 1, \pm 2$
2) set of $q_{s} \pm 1$
3) possible roots of $\mathrm{P}(\mathrm{x}) \pm \mathbf{1} \pm \mathbf{Z}$
4) Test each possible root using synthetic division:

$$
\begin{aligned}
& \text { 2) } 131-2 \quad-21131-2 \text { root }=-2 \\
& \frac{21022}{1511 N_{x}} \frac{-2-22}{\int_{x^{2}} I_{x}-1(\dot{v}} \text { factor }(x+2) \\
& \begin{array}{l}
x^{3}+3 x^{2}+x-2=(x+2)\left(x^{2}+x-1\right) f_{a} f_{c_{0}} \\
x=\frac{-1 \pm \sqrt{1+4}}{2 \cdot 1}=\frac{-1 \pm \sqrt{5}}{2}
\end{array} \\
& \text { Roots: }-2, \frac{-1+\sqrt{5}}{2}, \frac{-1-\sqrt{5}}{2}
\end{aligned}
$$

Example 2: Find the roots and write in factored form:

$$
y=9 x^{4}-3 x^{3}+x^{2}-8 x+4
$$

$$
\left\{1,2,4, \frac{1}{3}, \frac{2}{3}, \frac{1}{9} \frac{2}{9} \frac{4}{9}\right\}
$$

2/3) $9 x^{-3} 1-84$

$$
2 / 3 \begin{array}{r}
623 \\
9_{x^{3}} 3 \\
\frac{6}{6} 6 \\
9 x^{2} 99
\end{array}
$$

Double

$$
\begin{aligned}
& \left(x-\frac{2}{3}\right)(x-3)\left(9 x^{2}+\left(x+\frac{2}{3}\right)\right. \\
& \left(x-\frac{2}{3}\right)\left(x-\frac{2}{3}\right)(3)(3)\left(x^{2}+x+1\right)
\end{aligned}
$$

Roots: $2 / 3$ (double)

$$
\begin{aligned}
& x=\frac{-1 \pm \sqrt{1-4}}{2}=\frac{-1 \pm \sqrt{-3}}{2}= \\
& \sim \quad-\frac{1}{2}+\frac{\sqrt{3} i}{2} \\
& =-\frac{1}{2}-\frac{\sqrt{3} i}{2} \\
& u_{L} \quad 2 / 3 \text { (double root) }
\end{aligned}
$$

Example 3:
Determine the roots and write in factored form:

$$
\begin{aligned}
& y=x^{3}-7 x-\underline{x^{2}}- \pm 1,2,3,6 \\
& \text { Possible } \pm\{1,2,3,6\} \\
& \text { 3) } \begin{array}{r}
10-7-6 \\
\frac{396}{1326}
\end{array} \\
& (x-3)\left(x^{2}+3 x+2\right)=(x-3)(x+1)(x+2) \\
& x=\frac{-3 \pm \sqrt{9-8}}{2}=\frac{-3 \pm 4 \pi}{2} \\
& \frac{-3+1}{2}=-1 \\
& \frac{-3-1}{2}=-2 \\
& x=3 v
\end{aligned}
$$

Notice: as soon as you can get the factored form down to a quadratic, use the quadratic formula to find the other two roots. They may be complex.
Complex roots will come in conjugate pairs. If $a+b i$ is a root, then a - bi will be a root if the polynomial has integer coefficients.

Example 4: Factor and determine the roots:

$$
\begin{aligned}
& y=x^{3}+4 x^{2}+14 x+ \\
& \text { Factored form }
\end{aligned}
$$

1 real.

2 complex

$$
(x+2)\left(x^{2}+2 x+10\right)
$$

Roots:

$$
-2
$$

$-1+6 i$
$-1-6 i$

$$
\begin{aligned}
\begin{aligned}
& x^{2}+2 x+10=0 \\
& x=\frac{-2 \pm \sqrt{4-40}}{2}=\frac{-2 \pm \sqrt{-36}}{2} \\
&=\frac{-2 \pm 6 i}{2} \\
&=-1+6 i \\
&-1-6 i
\end{aligned}
\end{aligned}
$$

Example 5:

Write a polynomial function with real coefficients of degree 4 which has these roots:

$$
\begin{aligned}
& \left.\begin{array}{l}
2 i,-3,1 \\
(x-2 i)(x+2 i)
\end{array}\right)=x^{2}-4 i^{2} \\
& \left(x^{2}+4\right)(x+3)(x-1) \\
& \left(x^{2}+4\right)(x+3) \\
& =x^{2}+4 x^{2}+4 x+12 \\
& \\
& (x-1) \\
& \frac{x^{4}+3 x^{3}+4 x^{2}+12 x}{x^{4}+2 x^{3}+x^{2}-4 x-12}
\end{aligned}
$$

