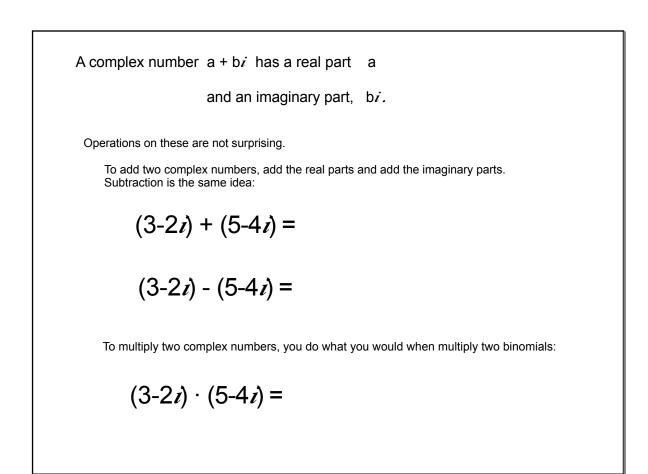
Section 2.4 Complex Numbers

- Use the imaginary unit, *i* to write complex numbers
- Add, subtract, multiply and divide complex numbers in standard form (a+bi)
- Use complex conjugates to write the quotient of two complex numbers in standard form
- Find complex solutions to polynomial equations

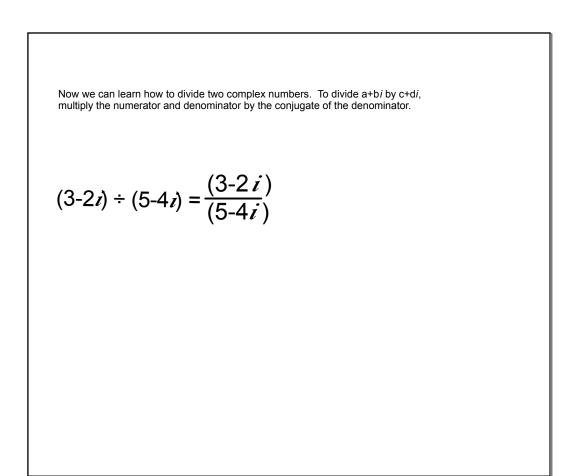
The solution to this equation is simple: $x^2 - 9 = 0$ The solution to this equation is not so simple: $x^2 + 9 = 0$ A new term defined: $\sqrt{-1}$ is defined to be i. So $\sqrt{-4} = \sqrt{-8} = \sqrt{-7} = 0$

Let's look at some p	powers of i :		
<i>i</i> ² =			
<i>i</i> ³ =			
<i>i</i> ⁴ =			
<i>i</i> ⁵ =			
<i>i</i> ⁶ =			
We see a pattern de	eveloping, so can find any pow	verof <i>i</i> .	
i ³⁸ =	i ⁶⁵ =	i ³²¹ =	



2.4 Complex Numbers

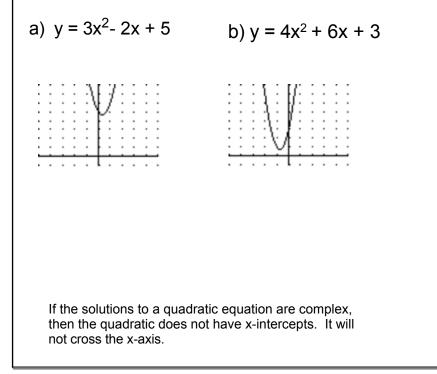
Division of two complex numbers is a bit trickier. We need to introduce another term.					
The <u>conjugate</u> of a+ b/is a-b/					
The <u>conjugate</u> of a-b <i>i</i> is a+b <i>i</i> .					
Write a conjugate for each of these:					
-3 + 4 <i>i</i>	2 - 5 <i>i</i>	2+ <i>i</i>			
Now multiply each of the conjugate pairs above, something amazing happens.					
When you multiply a complex number by its conjugate, the result is a real number.					



Now we can write complex solutions to quadratic equations. Solve for the roots of each of these simplifying the radical expression as much as possible.

b)
$$4x^2+6x+3=0$$

What does this mean about the x-intercepts of the graphs of these functions?



2.4 Complex Numbers

Roots of a quadratic:
If
$$ax^2 + bx + c = 0$$
 then $x = -\frac{b \pm \sqrt{b^2 - 4ac}}{2a}$
Are the roots of these real?
If they are real, are they rational or irrational?
a) $y = 3x^2 - x + 5$ b) $y = 3x^2 + 8x - 5$
c) $y = x^2 - x + 2$ d) $y = 3x^2 - 8x - 3$