Section 2.4 Complex Numbers Use the imaginary unit, *i* to write complex numbers Add, subtract, multiply and divide complex numbers in standard form (a+bi) Use complex conjugates to write the quotient of two complex numbers in standard form Find complex solutions to polynomial equations 3-2 :

The solution to this equation is simple: $x^2 - 9 = 0$ $x^2 = 9$ $x = \pm 3$ The solution to this equation is not so simple: $x^2 + 9 = 0$ $x^2 = -9$ $x = \pm \sqrt{-9} = \pm \sqrt{9} i$ $x^2 = -9$ A new term defined: $\sqrt{-1}$ is defined to be *i*. So $\sqrt{-4} = \sqrt{-7} \cdot \sqrt{-7} = 2i$ $\sqrt{-8} = \sqrt{-9} \sqrt{-7} = 2i$ Let's look at some powers of i: $i^2 = -1$ $i^3 = -1 \cdot i = -i$ $i^4 = (-i)i = -i^2 = -(-i) = 1$ $i^5 = i$ $i^6 = -1$ $i^7 = -i$ We see a pattern developing, so can find any power of i. $i^{38} = (i)^{34} \cdot i^3$ $(i)^{34} \cdot i^3$ $(i)^{36} \cdot i^3$ (i

2.4 complex numbers

_	
	Division of two complex numbers is a bit trickier. We need to introduce another term.
	The <u>conjugate</u> of a+ b <i>i</i> is a-b <i>i</i> .
	The <u>conjugate</u> of a-b/is a+b/
	Write a conjugate for each of these:
	-3 + 4 <i>i</i> 2 - 5 <i>i</i> 2 + <i>i</i>
G	wy-3-4i 2+5i 2-i
	Now multiply each of the conjugate pairs above, something amazing happens. $(-3+4i)(-3-4i) = 9 - 16i^{2} + 2i - 12i^{2}$ $(2-5i)(2+5i) = 4 - 25i^{2} + 10i - 10i^{2}$ $(2+i)(2-i) = 4 - i^{2} - 2i + 2i^{2}$
	When you multiply a complex number by its conjugate, the result is a real number.

Now we can learn how to divide two complex numbers. To divide
$$a+bi$$
 by $c+di$,
multiply the numerator and denominator by the conjugate of the denominator.
$$(3-2i) \div (5-4i) = \frac{(3-2i)(5+4i)}{(5-4i)(5+4i)} = \frac{75+8+12i}{25+16} - 10i$$
$$\frac{23+2i}{9i} = \frac{23}{9i} + \frac{2}{9i}$$

2.4 complex numbers

