Section 2.4 Complex Numbers

- Use the imaginary unit, i to write complex numbers
- Add, subtract, multiply and divide complex numbers in standard form ($\mathrm{a}+\mathrm{b} i$)
- Use complex conjugates to write the quotient of two complex numbers in standard form
- Find complex solutions to polynomial equations

$$
3-2 i
$$

The solution to this equation is simple: $x^{2}-9=0$

$$
\begin{aligned}
x^{2} & =9 \\
x & = \pm 3
\end{aligned}
$$

The solution to this equation is not so simple: $x^{2}+9=0$

$$
\begin{aligned}
& x^{2}=-9 \quad x= \pm \sqrt{-9}= \pm \sqrt{9} i \\
& x^{2}=-9
\end{aligned}
$$

A new term defined: $\sqrt{-1}$ is defined to be i.

So $\sqrt{-4}=\sqrt{-1} \cdot \sqrt{4}=2 i$
$\sqrt{-8}=\sqrt{4} \sqrt{2} \sqrt{-1}=2 \sqrt{2} i$
$\sqrt{-7}=\sqrt{7} i$

Let's look at some powers of i :

$$
\begin{aligned}
& i^{2}=-1 \\
& i^{3}=-1 \cdot \dot{C}=-\dot{L} \\
& i^{4}=(-i) \dot{C}=-\dot{L}^{2}=-(-1)=1 \\
& i^{5}=\dot{C} \\
& i^{6}=-1 \\
& i^{7}=-\dot{C}
\end{aligned}
$$

We see a pattern developing, so can find any power of i.

$$
\begin{array}{ccc}
i^{38}= & (i)^{36} \cdot i^{2} & i^{65}=i^{i 41} \cdot i \\
\left(i^{4}\right)^{921} \cdot i^{320} \cdot i^{2} & \left(i^{4}\right)^{14} \cdot i^{1} & \left(i^{880} \cdot i^{8}\right. \\
1^{7} \cdot i^{2}=\left(i^{2}\right) & \underline{i} & \underline{i}
\end{array}
$$

A complex number $\mathrm{a}+\mathrm{b} i$ has a real part a
and an imaginary part, bi.

Operations on these are not surprising.
To add two complex numbers, add the real parts and add the imaginary parts.
Subtraction is the same idea:

$$
\begin{aligned}
(3-2 i)+(5-4 i)= & 8-6 i \\
(3-2 i)-(5-4 i)= & 3-2 i-5+4 i \\
& -2+2 i
\end{aligned}
$$

To multiply two complex numbers, you do what you would when multiply two binomials:

Division of two complex numbers is a bit trickier.

 We need to introduce another term.The conjugate of $\mathrm{a}+\mathrm{b} i$ is $\mathrm{a}-\mathrm{b} i$.

The conjugate of $\mathrm{a}-\mathrm{b} i$ is $\mathrm{a}+\mathrm{b} i$

Write a conjugate for each of these

$C y_{j}-3+4 i$	$2-5 i$	$2+i$
$-3-4 i$	$2+5 i$	$2-i$

Now multiply each of the conjugate pairs above, something amazing happens.

$(2+i)(2-i)=4-i^{2}-2 i+2 i$

$$
5
$$

When you multiply a complex number by its conjugate, the result is a real number.

Now we can learn how to divide two complex numbers. To divide a+bi by cadi, multiply the numerator and denominator by the conjugate of the denominator.

$$
\begin{gathered}
(3-2 i) \div(5-4 i)=\frac{(3-2 i)}{(5-4 i)} \frac{(5+4 i)}{(5+4 i)}=\frac{15+8+12 i-10 i}{25+16} \\
\frac{23+2 i}{41}=\frac{23}{41}+\frac{2}{41} i
\end{gathered}
$$

Now we can write complex solutions to quadratic equations. Solve for the roots of each of these simplifying the radical expression as much as possible.

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

a) $3 x^{2}-2 x+5=0$

$$
\begin{gathered}
x=\frac{2 \pm \sqrt{4-4(3)(5)}}{6}=\frac{2 \pm \sqrt{-56}}{6}=\frac{2 \pm 2 \sqrt{14} i}{6} \\
\frac{1}{3} \pm \frac{\sqrt{14}}{3} i
\end{gathered}
$$

b) $4 x^{2}+6 x+3=0$

$$
\begin{gathered}
x=\frac{-6 \pm \sqrt{36-48}}{8}=\frac{-6 \pm \sqrt{-12}}{8}=\frac{-6 \pm 2 \sqrt{3} i}{8} \\
\frac{-3}{4} \pm \frac{\sqrt{3}}{4} i
\end{gathered}
$$

What does this mean about the x-intercepts of the graphs of these functions?
a) $y=3 x^{2}-2 x+5$
b) $y=4 x^{2}+6 x+3$

row ts $-\frac{3}{4} \pm \frac{\sqrt{3}}{4} i$

If the solutions to a quadratic equation are complex, then the quadratic does not have x-intercepts. It will not cross the x-axis.

Roots of a quadratic:
If $a x^{2}+b x+c=0$ then $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Are the roots of these real?

If they are real, are they rational or irrational? Complex
a) $y=3 x^{2}-x+5$
b) $y=3 x^{2}+8 x-5$

c) $y=x^{2}-x+2$
d) $y=3 x^{2}-8 x-3$
$\sqrt{1-8}$
$\sqrt{64+36}$ $\sqrt{-7}$
$\sqrt{100}=10$
not real Complex
rational roots

