

2.2 Polynomial Functions of Higher Degree

- Use transformations to sketch graphs of polynomial functions
- Determine end behavior by looking at the leading coefficient
- Find and use zeros of polynomial functions as sketching aids

_												-		
Ske	tching grap	hs of p	olynomi	al funct	ions									
	If the polyr factor	nomial it	factors						1					
	place													
	y-inter													
	end be	ehavior												+
								_						-
f	(x) = x ⁴	3	$2n\sqrt{2}$											_
- 1	(^) - ^	-^ -	207											
									T					
														+
		_							_					-
		_									_			-
			3											
	Ť((x) = 1	x ³ - 3x	+ 1										
lf it	does not fa	actor:												
	end behavi													—
	y- intercep	ot						-						
	estimate s	ome po	oints	_					-1-					-
								_	_			_		_
			213 2/ 5											
	x =-2	y = (-	2) ³ - 3(-2	.) + 1										
	v = _1	y = (1) ³ - 3(-1	$) \pm 1$										
		y (1) 0(, .										
	x = 0	v = 0	³ - 30 + 1											
						-			+		-	-	•	+
	x = 1	y = 1	³ - 3(1) +	1				_						-
										_		-		-
	x = 2	y = 2	³ - 3(2) +	1								1		
									1					
								+ +			-	-		