$\approx\}\ulcorner @ \infty \Sigma \pi$

Savings Plans and Investments

Total Return -- the relative change in the investment value over a period of time.

$$
\begin{aligned}
\text { total return } & =\frac{\text { new value }- \text { starting principal }}{\text { starting principal }} \\
& =\frac{A-P}{P} \quad \text { (percentage, NOT a } \\
& =\frac{A}{P}-\frac{P}{P}=\frac{A}{P}-1 \quad \text { dollar value) }
\end{aligned}
$$

Annual Return -- the average annual rate at which your money grew (APY) over a period of time.
annual return $=\left(\frac{\mathrm{A}}{\mathrm{P}}\right)^{(1 / \gamma)}-1$ (also a percentage)

EX 1: Three years after buying 20 shares of $X Y Z$ stock for $\$ 25$ per share, you sell the stock for $\$ 8500$. Find the total and annual return on this investment.

$$
P=25(20) \stackrel{\$ 00}{=} A=\$ 8500
$$

total return: $\frac{8500-500}{500}=\frac{8050}{500}=\frac{80}{5}=16$

$$
=1600 \%
$$

annual return: $\left(\frac{8500}{500}\right)^{1 / 3}-1=17^{1 / 3}-1 \simeq 1.57128$

$$
\simeq 157.128 \%
$$

Types of Investments

1) Stocks - gives you a share of ownership in a company. The only way to get money from a stock is to sell.
2) Bonds - a promise of future cash. The issuer pays simple interest and promises to pay the principal by some later date.
3) Cash - money deposited in bank accounts, CDs and U.S. Treasury Bills

Things to consider when investing

1) Liquidity - How easy is it to get to your money?
2) Risk - Is the principal invested at risk?
3) Return - How much return (total or annual) do you expect to earn?

EX 2: Which investment in 1900 would have been worth more at the end of 2008 ?
a) $\$ 10$ in stocks
b) $\$ 75$ in bonds
c) $\$ 500$ in cash
which formula to use?
Compound interest formula,

| Historical Returns
 $1900-2008$
 Average
 Annual
 Category Return
 Stocks 6.0%
 Bonds 2.1%
 Cash 1.0% | |
| :--- | :--- | compounding annually

$$
A=P(1+A P R)^{4}
$$

(a) $P=10, A P R=6 \%, Y=108$

$$
A=10(1+0.06)^{108}
$$

$$
A \simeq 5,407.96
$$

$$
\begin{gathered}
(b) P=75, A P R=2.17 \% \\
Y=108^{1} \\
A=75(1+0.021)^{108} \\
A \simeq 707.69
\end{gathered}
$$

$$
\begin{aligned}
& \text { (c) } P=500, A P R=17, y=108 \\
& A=500(1+0.01)^{108} \\
& A \bumpeq \$ 1,464.46
\end{aligned}
$$

