$\approx\}\ulcorner @ \infty \Sigma \pi$

 Math 1030 \#18a Problem Solving with GeometryAngles

Latitude
Longitude

Degrees, Minutes, Seconds
$1^{\circ}=60$ There are sixty minutes in a degree.
$1^{\prime}=60 " \quad$ There are sixty seconds in a minute.

$$
3600^{\prime \prime}=1^{\circ}
$$

EX 1: Convert 47.67° to degree-minutes-seconds.
$47.67^{\circ}=47^{\circ}+$ some minutes \& seconds

$$
\begin{aligned}
& 0.67^{\phi}\left(\frac{60^{\prime}}{1^{\phi}}\right)=40.2^{\prime}=40^{\prime}+\text { some number } \\
& 0.2^{\gamma}\left(\frac{60^{\prime \prime}}{1^{\prime}}\right)=12^{\prime \prime} \Rightarrow 47.67^{\circ}=47^{\circ} 40^{\prime} 12^{\prime \prime}
\end{aligned}
$$

EX 2: Convert $150^{\circ} 15^{\prime} 27$ " to decimal degrees.

$$
\begin{array}{l|l}
15^{+}\left(\frac{1^{0}}{60^{\prime}}\right)=0.25^{\circ} & 150^{\circ} 15^{\prime} 27^{\prime \prime} \\
=150^{\circ}+0.25^{\circ}+0.0075^{\circ} \\
27^{\prime \prime}\left(\frac{1^{\circ}}{3600^{*}}\right)=0.0075^{\circ} & =150.2575^{\circ}
\end{array}
$$

Latitude measures positions north or south of the equator. It will be a number between 0° and 90°.

Longitude measures east-west position from the prime meridian. It will be a number between 0° and 180°.

EX 3: Determine the approximate latitude and longitude of the following places.
a) The Panama Canal

$$
\sim 9^{\circ} \mathrm{N} 80^{\circ} \mathrm{W}
$$

b) The eastern most point in South America (min Brazil)

$$
\sim 20.5^{\circ} \mathrm{S} 29^{\circ} \mathrm{W}
$$

c) The western most point in Alaska.

$$
51^{\circ} \mathrm{N} 179^{\circ} \mathrm{W}
$$

EX 4: The moon has an angular size of 30 minutes $\left(0.5^{\circ}\right)$ and its distance from the earth is about 240,000 miles.
a) What is the diameter of the moon? (actual $\frac{360^{\circ}}{\text { diameter }}=\frac{2 \pi \text { distance }}{\approx 2159 \mathrm{milas})}$
$\begin{aligned} & 0.5^{\circ} \\ & 360^{\circ}=\frac{\text { phys. size }}{2 \pi(240,000 \mathrm{mi})} \Rightarrow \text { phys size }\end{aligned}=666.6 \pi$ miles
b) At what distance would a tennis ball (2.5 " diameter) have to be so it would have the same angular size as the moon?
$\frac{0.5^{\circ}}{360^{\circ}}=\frac{2.5 \text { in }}{2 \pi(\text { dist })} \Leftrightarrow \operatorname{dist}\left(\frac{0.5}{360}\right)=\frac{2.5 \mathrm{in}}{2 \pi}$
dist $=\frac{2.5 \text { in }}{2 \pi}\left(\frac{360}{0.5}\right) \simeq 286.5$ in $\simeq 24 \mathrm{ft}$
c) What is the angular size of the tennis ball when held at arm's

$$
\begin{aligned}
& \text { length from the eye (about } \left.25^{\prime \prime}\right) \text { ? } \\
& \frac{\text { and size }}{360^{\circ}}=\frac{2.5 \text { in }}{2 \pi(25 i h)} \Rightarrow \text { and size }=\frac{2.5\left(360^{\circ}\right)}{50 \pi} \simeq 5.73^{\circ}
\end{aligned}
$$

d) How far from Washington's face (60 ft in diameter) would you have to stand to have the tennis ball, held at arm's length, barely cover the face?
angular size $=6^{\circ}$ phys. size $=60 \mathrm{ft} \quad$ dist $=$?

$$
\begin{aligned}
\frac{6^{\circ}}{360^{\circ}} & =\frac{60 \mathrm{ft}}{2 \pi(\text { dist })} \\
\text { dist } & =\frac{60 \mathrm{ft}}{2 \pi}\left(\frac{360}{6}\right) \simeq 573 \mathrm{ft}
\end{aligned}
$$

(a little less than 2 football fields away)

