$\approx\}$
 $\infty \Sigma \pi$

Math 1030 \#16D

Using Roots to Find Rates

Exponential Decay and Growth:
$Q=Q_{0}(1-r)^{t}$

$$
Q=Q_{0}(1+r)^{t}
$$

$Q_{0}=$ initial amount,$\quad Q=$ final amount,$\quad r=$ rate,$\quad t=$ time
Use different techniques to find different parts of the model:

- Use division to find Q_{0} :

Ex:

$$
700=Q_{0}(1-0.03)^{8}
$$

- Take logs of both sides to find t :

$$
\text { Ex: } \quad 700=200(1+0.03)^{t}
$$

- Take roots of both sides to find r :

Ex: $\quad 700=200(1+r)^{8}$

Example 1: Solve the equations

a) $\mathrm{x}^{2}=16$
b) $\mathrm{x}^{5}=32$
c) $x^{5}=33$
d) $(x-2)^{9}=2500$
e) $700=200(1+r)^{8}$

Look for
calculation
error in video
in last step of
1d. It is
corrected in
post notes.

$\sqrt{\square}$							
main	abc	func	DEG	r	\pm	clear all	\mathcal{F}
a^{2}	a^{b}	$\|a\|$	7	8	9	\div	*
$\sqrt{ }$	$\sqrt[n]{ }$	π	4	5	6	\times	\%
sin	\cos	\tan	1	2	3	-	$\frac{a}{b}$
$($)	,	0	.	ans	+	-

Roots and Fractional Exponents

- Exponent Properties:

$$
\begin{aligned}
& \left(7^{2}\right)\left(7^{3}\right)=(7 \cdot 7)(7 \cdot 7 \cdot 7)=7^{5} \\
& \left(7^{2}\right)\left(7^{3}\right)=7^{2+3}=7^{5}
\end{aligned}
$$

- Fractional Exponents:

$$
\left(7^{1 / 2}\right)\left(7^{1 / 2}\right)=7^{1 / 2}+\frac{1 / 2}{2}=7
$$

- Square Roots:

$$
(\sqrt{7})(\sqrt{7})=7
$$

- Root-Fractional Exponent Connection:

$$
\begin{aligned}
& \sqrt{7}=7^{1 / 2} \\
& \sqrt[2]{7}=7^{1 / 2} \\
& \sqrt[n]{x}=x^{1 / n}
\end{aligned}
$$

Ex 2: Rewrite the following with rational exponents, then calculate them.
a) $\sqrt[3]{10}$
b) $\sqrt[4]{81}$
c) $\sqrt[25]{1000}$

Ex 3: In 1990, the population of a city was 20,000. In 2016 , the population had grown to 60,000 . Find the average annual rate of growth.

Ex 4: A drug has a half life in the body of 14 hours. Find the hourly rate of decay.

