$\approx\} \sqrt{ }$
 $\infty \Sigma$
 π

Math 1030 \#16D

Using Roots to Find Rates

Exponential Decay and Growth:
Decay
Growth
$Q=Q_{0}(1-r)^{t}$

$$
Q=Q_{0}(1+r)^{t}
$$

$Q_{0}=$ initial amount,$\quad Q=$ final amount,$\quad r=$ rate,$\quad t=$ time
Use different techniques to find different parts of the model:

- Use division to find Q_{0} :

$$
\begin{array}{ll}
\text { Ex: } & 700=Q_{0}(1-0.03)^{8} \\
& \frac{700}{(1-0.03)^{8}}=Q_{0} \\
& 552.586=Q_{0}
\end{array}
$$

- Take logs of both sides to find t :

$$
\begin{aligned}
& \text { Fake logs of both sides to find } t: \\
& \begin{array}{l}
700=200(1+0.03)^{t} \\
\text { Ex: } \\
\frac{700}{200}=(1+0.03)^{+} \\
3.5=(1.03)^{+} \\
\log (3.5)=\log \left[(1.03)^{+ \pm}\right.
\end{array} \quad\left[\begin{array}{c}
\log (3.5)= \\
t \cdot \log (1.03) \\
\frac{\log (3.5)}{\log (1.03)}=+ \\
42.382 \approx+1
\end{array}\right.
\end{aligned}
$$

- Take roots of both sides to find r :

Ex:

$$
700=200(1+r)^{8}
$$

Example 1: Solve the equations

$$
2^{5}=32
$$

a) $\mathrm{x}^{2}=16$
b)

$$
2 \sqrt{x^{2}}= \pm \sqrt{16}
$$

$$
x=t 4
$$

$$
\begin{array}{cc}
x^{5}=32 & \text { c) } x^{5}=33 \\
\sqrt[5]{x^{5}}=\sqrt[5]{32} & \sqrt[5]{x^{5}}=\sqrt[5]{33} \\
x=2 & x \approx 2.01
\end{array}
$$

d) $(x-2)^{9}=2500$

$$
\sqrt[9]{(x-2)^{9}}=\sqrt[9]{2500}
$$

$$
x-2=9 \sqrt{2500} \quad 8 \sqrt{3.5}=\sqrt[8]{(1+r)^{8}}
$$

$$
\begin{array}{l|l}
\begin{array}{l}
\text { Error } \\
\text { Here: } \\
\text { Should be } \\
4.385
\end{array} & x \approx 9 \sqrt{2500}+2 \\
& \sqrt{V}
\end{array}
$$

$$
\begin{aligned}
& \text { e) } 700=200(1+r)^{8} \\
& \frac{700}{200}=(1+r)^{8} \\
& \sqrt[8]{3.5}=1+r \\
& \sqrt[8]{3.5}-1=r
\end{aligned}
$$

Roots and Fractional Exponents

- Exponent Properties:

$$
\begin{aligned}
& \left(7^{2}\right)\left(7^{3}\right)=(7 \cdot 7)(7 \cdot 7 \cdot 7)=7^{5} \\
& \left(7^{2}\right)\left(7^{3}\right)=7^{2+3}=7^{5}
\end{aligned}
$$

- Fractional Exponents:
- Square Roots:

$$
\left.\frac{\left(7^{1 / 2}\right.}{1}\right) \frac{\left(7^{1 / 2}\right)}{1}=7^{1 / 2+1 / 2}=7^{1}=7
$$

$$
(\sqrt{7})(\sqrt{7})=7
$$

- Root-Fractional Exponent

Connection:

$$
\begin{aligned}
& \sqrt{7}=7^{1 / 2} \\
& \sqrt[2]{7}=7^{1 / 2} \\
& \sqrt[n]{x}=x^{1 / n}
\end{aligned}
$$

Ex 2: Rewrite the following with rational exponents, then calculate them.
a) $\sqrt[3]{10}=10^{\frac{1}{3}} \approx 2.15^{4}$
b) $\sqrt[4]{81}=81^{\frac{1}{9}}=3 \quad 3^{4}=81$
c) $\sqrt[25]{1000}=1000^{\frac{1}{25}} \approx 1.318$

$$
(1.318)^{25} \approx 1000
$$

Ex 3: In 1990, the population of a city was 20,000. In 2016, the population had grown to 60,000 . Find the average annual rate of growth.

$$
\begin{aligned}
& Q_{0}=20,000 \\
& O=60,000 \\
& t=2016-1990 \\
& =26 \\
& r=\text { ? } \\
& +\begin{aligned}
60,000 & =20,000(1+r)^{26} \\
\frac{60,000}{20,000} & =(1+r)^{26} \\
26 \sqrt{3} & =+26 \sqrt{(1+r)^{26}} \\
26 \sqrt{3} & =1+r \\
26 \sqrt{3}-1 & =r \\
0.0431 & \approx r \quad \begin{array}{c}
4.31 \% \\
\text { average } \\
\text { annudgrontr }
\end{array}
\end{aligned} \\
& +\begin{aligned}
60,000 & =20,000(1+r)^{26} \\
\frac{60,000}{20,000} & =(1+r)^{26} \\
26 \sqrt{3} & =+26 \sqrt{(1+r)^{26}} \\
26 \sqrt{3} & =1+r \\
26 \sqrt{3}-1 & =r \\
0.0431 & \approx r \quad \begin{array}{c}
4.31 \% \\
\text { average } \\
\text { annudgrontr }
\end{array}
\end{aligned} \\
& +\begin{aligned}
60,000 & =20,000(1+r)^{26} \\
\frac{60,000}{20,000} & =(1+r)^{26} \\
26 \sqrt{3} & =+26 \sqrt{(1+r)^{26}} \\
26 \sqrt{3} & =1+r \\
26 \sqrt{3}-1 & =r \\
0.0431 & \approx r \quad \begin{array}{c}
4.31 \% \\
\text { average } \\
\text { annudgrontr }
\end{array}
\end{aligned} \\
& +\begin{aligned}
60,000 & =20,000(1+r)^{26} \\
\frac{60,000}{20,000} & =(1+r)^{26} \\
26 \sqrt{3} & =+26 \sqrt{(1+r)^{26}} \\
26 \sqrt{3} & =1+r \\
26 \sqrt{3}-1 & =r \\
0.0431 & \approx r \quad \begin{array}{c}
4.31 \% \\
\text { average } \\
\text { annudgrontr }
\end{array}
\end{aligned} \\
& +\begin{aligned}
60,000 & =20,000(1+r)^{26} \\
\frac{60,000}{20,000} & =(1+r)^{26} \\
26 \sqrt{3} & =+26 \sqrt{(1+r)^{26}} \\
26 \sqrt{3} & =1+r \\
26 \sqrt{3}-1 & =r \\
0.0431 & \approx r \quad \begin{array}{c}
4.31 \% \\
\text { average } \\
\text { annudgrontr }
\end{array}
\end{aligned} \\
& +\begin{aligned}
60,000 & =20,000(1+r)^{26} \\
\frac{60,000}{20,000} & =(1+r)^{26} \\
26 \sqrt{3} & =+26 \sqrt{(1+r)^{26}} \\
26 \sqrt{3} & =1+r \\
26 \sqrt{3}-1 & =r \\
0.0431 & \approx r \quad \begin{array}{c}
4.31 \% \\
\text { average } \\
\text { annudgrontr }
\end{array}
\end{aligned} \\
& +\begin{aligned}
60,000 & =20,000(1+r)^{26} \\
\frac{60,000}{20,000} & =(1+r)^{26} \\
26 \sqrt{3} & =+26 \sqrt{(1+r)^{26}} \\
26 \sqrt{3} & =1+r \\
26 \sqrt{3}-1 & =r \\
0.0431 & \approx r \quad \begin{array}{c}
4.31 \% \\
\text { average } \\
\text { annudgrontr }
\end{array}
\end{aligned} \\
& Q=Q_{0}(1+r)^{+}
\end{aligned}
$$

Ex 4: A drug has a half life in the body of 14 hours. Find the hourly rate of decay.

\[

\]

