$\approx\}\ulcorner\propto \infty \Sigma \pi$

The easiest way to graph exponential functions is to use points corresponding to several doubling times (or half-lives in the case of decay).

For growth:
Start at $\left(0, Q_{0}\right)$
Plot ($T_{\text {double }}, 2 Q_{0}$),
$\left(2 T_{\text {double, }} 4 Q_{0}\right)$,
$\left(3 T_{\text {double }}, 8 Q_{0}\right)$, etc.

For decay:
Start at $\left(0, Q_{0}\right)$
Plot $\left(T_{\text {half, }}, 1 / 2 Q_{0}\right)$,
$\left(2 T_{\text {half, }} 1 / 4 Q_{0}\right)$,
($3 T_{\text {half, }} 1 / 8 Q_{0}$), etc.

$$
T_{\text {double }}=\frac{\log _{l 0} 2}{\log _{10}(1+r)}
$$

$$
r>0
$$

$$
T_{\text {half }}=-\frac{\log _{10} 2}{\log _{10}(1+r)}
$$

$$
r<0
$$

EX 1: Graph the following equations from the previous lesson.
a) The growth of the population of Heber, Utah is $Q=20,000(1.15)^{t}$

b) The decline of the population of Cook Islands is $Q=11,000(0.97)^{t}$

Alternate Forms of the Exponential Function

$$
Q=Q_{0 x}(1+r)^{t} \quad \text { Note: } r \text { is positive for growth and negative for decay. }
$$

$$
Q=Q_{0 \times}(2)^{t / T_{\text {touble }}} \text { for growth }
$$

$$
Q=Q_{0 \times}(1 / 2)^{t / T_{\text {hal }}} \text { for decay }
$$

EX 2: If the half-life of a certain Antibiotics in the bloodstream is 10 -hours. If you are given a 15 mg shot at midnight, write an equation for and sketch a graph showing the amount in your bloodstream for the next 24 hours.

