

input (indep.vav.) = t=time output (dep.var.) = diam.=d

a) How much does the diameter increase each year? (slope=?

 $M = \frac{8-2}{4-0} = \frac{6}{4} = \frac{3}{2} \frac{3}{4}$

b) When is the diameter 10 cm? {=?, d= 10

 $0 = \frac{3}{5} + \frac{1}{2}$ 8 = $\frac{3}{5} + \frac{1}{5} = \frac{5}{3} = \frac{1}{5} = \frac{5}{3} = \frac{1}{5} = \frac{1}{5$

diameter when you planted the tree?

d=? when t=0, d= \(\frac{3}{2} \)(0)+2=\(\frac{2}{2} \) cm

(4,8)

d) When the child is six, what is the diameter of the tree?

e) Write an equation of this relationship.

(we already did that above)
$$d = \frac{3}{2}t + 2$$

EX 2: Your prize-winning ant colony is in a state of emergency. The population is declining at a linear rate and there is nothing you can do about it. You make a table of the population of ants:

 (indep var)
 days since start of year
 t
 18
 34
 62
 84

 (d-ep var)
 number of ants
 n
 9328
 8872
 8074
 7747

a) Find a linear equation that describes your ant colony population as a function of the number of days since the beginning of the

year. () find m: (18, 9328) (34, 8872)

$$M = \frac{9328 - 8872}{18 - 34} = \frac{456}{-16} = -28.5$$
 and days
(2) find b: $9328 = -28.5(18) + 6 \Rightarrow 6 = 9841$ and $18 = -28.5 + 9841$

b) How many ants did you have at your New Year's party? (day #0)

at day 0, t=0, n=? (this is the breake)

$$n=-28.5(0)+9841=9841$$
 ants)

c) When will the entire ant colony be dead?

d) The ant colony fair requires a minimum population of 1000. When will your ant colony become ineligible to defend its 1st prize at the fair?

$$t=?$$
 when $n=1000$
 $1000 = -28.5t + 9841$
 $-8841 = -28.5t$
 -28.5 -28.5
 $310.2 \simeq t$
 \Rightarrow well be ineligible for fair on the 311th day