$\approx\}\ulcorner @ \infty \Sigma \pi$

${ }^{P_{0} f_{e f} \text { of }}$ Slope and Rate of Change

A Linear Function has

- a constant rate of change
- a straight-line graph

The Slope of the line is the rate of change.
The greater the rate of change, the steeper the slope.
for 2 pts on the line $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$
rate of change $=$ slope $=\frac{\text { change in dependent variable }}{\text { change in independent variable }}=\frac{\text { rise }}{\text { run }}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
vert. change
horiz. change
EX 1: Discuss the slope (rate of change) in each of these graphic examples.

$$
m=\frac{2-0}{4-0}=\frac{2}{4}=\frac{1}{2}
$$

$$
\begin{aligned}
m=\frac{12-0}{0-6} & =\frac{12}{-6} \\
& =-2
\end{aligned}
$$

A Price-Demand Function is a good example of slope.

EX 2: Write a statement that describes how one variable varies with respect to the other. Then answer the questions.

A gas station owner finds for each 2-cent increase in the price of gasoline, she sells 120 fewer gallons of gas per week.
sates decrease as price increases price is one variable, sales is another variable (indep.van) (gallons) (dep .van.)
a) How much more or less will she sell if she raises the price by 10申 per gallon?
note: $\quad 10 \phi=5 \quad 2-\phi$ increments
\Rightarrow she will sell $5(120)=600$ fewer gallous per week
b) What if she decreases the price by 5ϕ per gallon?
note: $5 \neq 2.5 \quad 2-4$ increments
\Rightarrow she will sell $2.5(120)=300$ move gallons per week
c) What is the slope (rate of change) in this problem.
slope = rate of change

$$
\begin{aligned}
& =\frac{\text { dep. var. change }}{\text { indep. var. change }}=\frac{\text { change in sates }}{\text { change in price }} \\
& =\frac{-120}{2} \mathrm{gal} / 4=-60 \mathrm{gal} / 4
\end{aligned}
$$

