$\approx\}\ulcorner @ \infty \Sigma \pi$

ren Math 1030 \#10c arm
Loans, Credit Cards and Mortgages
Install $_{m_{\text {ent }}} L_{\text {oaqn }^{n}}$ Mortgages
payday Loan

Mortgages
A mortgage is an installment loan to finance a home.
The down payment is the amount of money you must pay up front to be given the loan.
Closing costs are fees you must pay to be given the loan.
direct costs
fees charged as points, 1% of the loan amount.

One type is a fixed rate mortgage (FRM) where you have a guaranteed interest rate for the life of the loan.

EX 1: Compare the monthly payments and total loan cost for these two loans. You borrow \$150,000 for a home.

$$
\begin{aligned}
& P=150000 \\
& n=12 \quad P M T=\frac{P \cdot\left(\frac{A P R}{n}\right.}{\left[1-\left(1+\frac{A P R}{n}\right)^{(-n Y)}\right]}
\end{aligned}
$$

30-year with APR of 7.25%
15-year with APR of 6.8%

$$
\begin{aligned}
& A P R=0.0725, y=30 \\
& P m T=\frac{150000\left(\frac{0.0725}{12}\right)}{1-\left(1+\frac{0.0725}{12}\right)^{-12(30)}} \left\lvert\, \begin{aligned}
15 & =15, A P R=0.068 \\
& =\frac{150000\left(\frac{0.068}{12}\right)}{1-\left(1+\frac{0.068}{12}\right)^{-12(15)}} \\
& \simeq \$ 1323.26
\end{aligned}\right. \\
& \simeq \$ 1.53
\end{aligned}
$$

total payments =

$$
\begin{array}{r}
1023.26(12)(30) \\
=\$ 368,375.19
\end{array}
$$

total payments

$$
\begin{aligned}
= & 1331.53(12)(15) \\
& =239,674.66
\end{aligned}
$$

EX 2: Consider these options for a $\$ 180,000$ mortgage. Calculate the monthly payments and total closing costs for each.
$p=180000 \quad \mathrm{PMT}=\frac{P \cdot\left(\frac{A P R}{n}\right)}{\left[1-\left(1+\frac{A P R}{n}\right)^{(-n Y)}\right]}$

30-year FRM 7.5\%
with $\$ 1200$ direct cost
and no points

$$
\begin{aligned}
\text { PIT } & =\frac{180000\left(\frac{0.075}{12}\right)}{1-\left(1+\frac{0.075}{12}\right)^{-12(30)}} \\
& \simeq \$ 1258.59
\end{aligned}
$$

Closing costs

$$
\stackrel{\$}{=} 1200
$$

total cost

$$
\begin{aligned}
& =1258.59(12)(30)+1200 \\
& =\$ 454,292.40
\end{aligned}
$$

(B) 30-year FRM 6\%
with $\$ 1500$ direct costs
and 4 points

$$
\begin{aligned}
\operatorname{PmT} & =\frac{180000\left(\frac{0.06}{12}\right)}{1-\left(1+\frac{0.06}{12}\right)^{-12(30)}} \\
& \simeq \$ 1079.19
\end{aligned}
$$

closing costs

$$
\begin{aligned}
& =1500+0.04(180000) \\
& =\$ 8700
\end{aligned}
$$

total cost

$$
\begin{aligned}
& =1079.19(12)(30)+8700 \\
& =397,208.40
\end{aligned}
$$

An Adjustable Rate Mortgage (ARM) is one in which the interest rate changes whenever prevailing rates change.

$$
\begin{aligned}
& \text { e. } \\
& \text { PM }=\frac{P \cdot\left(\frac{A P R}{n}\right)}{\left[1-\left(1+\frac{A P R}{n}\right)^{(-n Y)}\right]}
\end{aligned}
$$

EX 3: Compare these two options for a $\$ 125,000$ 30-year loan.
Summarize the payments for the first two years. $P=125000$
(A)

FRM at 8.5\%

$$
\begin{aligned}
A P R & =0.085 \\
P M T & =\frac{125000\left(\frac{0.085}{12}\right)}{1-\left(1+\frac{0.085}{12}\right)^{-12(30)}} \\
& \simeq \$ 961.14
\end{aligned}
$$

(B)

ARM with first year 5.5\%
and second year at 10%
year: $A P R=0.055$

$$
\begin{aligned}
P M T_{1} & =\frac{125000\left(\frac{0.055}{12}\right)}{1-\left(1+\frac{0.055}{12}\right)^{-12(30)}} \\
& \simeq \$ 709.74
\end{aligned}
$$

year 2:
Note: we used a spreadsheet $\omega /$ amortization table to compute the loan balance after the first 12 payments from year 1)

$$
\begin{aligned}
& P=123,316.10, \quad y=29 \\
& P M T_{2}=\frac{123316.10\left(\frac{0.10}{12}\right)}{1-\left(1+\frac{0.1}{12}\right)^{-12(29)}} \\
& \simeq \$ 1088.24
\end{aligned}
$$

total paid in first 2 you

$$
=709.74(12)+1088.24(12)
$$

$$
=21,575.76
$$

