Chapter 9: EXPONENTIAL AND LOGARITHMIC FUNCTIONS

Section 9.5: Solving Exponential and Logarithmic Equations Objectives:

* Solve basic exponential and logarithmic equations.
* Use inverse properties to solve exponential and logarithmic equations.

$$
\log _{2}(x-2)=\log _{2} x+3
$$

$500 e^{-0.2 x}=100$

Solve

1) $9^{x+3}=9^{10}$

$$
\begin{gathered}
x+3=10 \\
x=7
\end{gathered}
$$

2) $\log _{3}(4-3 x)=\log _{3}(2 x+9)$
logarithmic eqn because variable inside $\log f_{n}$

$$
4-3 x=2 x+9
$$

$$
4=5 x+9
$$

$$
-5=5 x \Leftrightarrow x=-1
$$

3) $\frac{6 e^{-x}}{6}=\frac{3}{6}$

$$
e^{-x}=\frac{1}{2}
$$

$\ln \frac{1}{2}=-x \quad \ln e^{-x}=\ln \frac{1}{2}$
$-\ln \frac{1}{2}=x \quad-x \ln e=\ln \frac{1}{2}$

$$
\begin{aligned}
& -x=\ln \frac{1}{2} \\
& x=-\ln \frac{1}{2}
\end{aligned}
$$

strategy to solve exp. egn
(1. Isolate exponential term. 2. (a) use defy log to rewrite the eau; OR take log of both sides (choose appropriate base for \log)
(3) finish solving
note: $x=\ln \left(\frac{1}{2}\right)^{-1}=\ln 2$

$$
\text { 4) } \left.\begin{array}{c}
\frac{50\left(3-e^{2 x}\right)}{50}=\frac{125}{50} \\
3-e^{2 x}=\frac{5}{2} \\
\frac{-e^{2 x}}{-1}=\frac{5}{2}-3 \\
-1
\end{array}\right) \begin{aligned}
& \frac{500}{1+e^{-0.1 x}}=400 \\
& 500=400\left(1+e^{-0.1 x}\right) \\
& \frac{5}{4}=1+e^{-0.1 x} \\
& -1 \\
& \frac{1}{4}=e^{-0.1 x}
\end{aligned}
$$

$$
x=\ln \sqrt{\frac{1}{2}}=-\ln \sqrt{2}
$$

$$
\begin{aligned}
\ln \frac{1}{4} & =\ln e^{-0.1 x} \\
\ln \left(\frac{1}{4}\right) & =-0.1 x \\
\frac{-1}{0.1} \ln \left(\frac{1}{4}\right) & =x
\end{aligned}=-10 \ln \left(\frac{1}{4}\right) .
$$

6) $\frac{3}{2} \cdot \frac{2}{3} \log _{3}(x+1)=-1 \cdot \frac{3}{2}$

$$
\log _{3}(x+1)=\frac{-3}{2}
$$

Strategy for solving logarithmic equ
(1) use log properties to condense log terms completely (2) use defy of \log to newnte ego in exp. form
(3) furnish solving
(4) check answer
7) $\log _{3}(x-2)+\log _{3} 5=3$

$$
\begin{gathered}
\log _{3}(5(x-2))=3 \\
3^{3}=5(x-2) \\
27=5 x-10 \\
37=5 x
\end{gathered} \quad \not \quad x=\frac{37}{5} \text { or } 7 \frac{2}{5}
$$

8) $\log _{3}(2 x)+\log _{3}(x-1)-\log _{3} 4=1$

$$
\begin{gathered}
\log _{3}(2 x(x-1))-\log _{3} 4=1 \\
\log _{3}\left(\frac{2 x(x-1)}{4}\right)=1
\end{gathered}
$$

$4 \cdot 3^{\prime}=\frac{2 x(x-1)}{4} \cdot 4$

$$
12=2 x(x-1)
$$

$12=2 x^{2}-2 x$
$0=2 x^{2}-2 x-12$
$0=2\left(x^{2}-x-6\right)$
$\frac{0}{2}=\frac{2(x-3)(x+2)}{2}$

$$
\begin{array}{ll}
0=(x-3)(x+2) \\
x-3=0 & x+2=0 \\
x=3 & x=-2
\end{array}
$$

$$
x=3,-2
$$

if $x=-$?
$\log _{3}(-4)$ DIE
throw away $x=-2$
Sorn: $x=3$

Applications

1) At what interest rate (compounded continuously) will you have to invest $\$ 10,000$ to make sure it doubles in ten years?

$$
\begin{aligned}
& y=p e^{r t} \quad P=\text { principal } \quad r \text { interest rate } \\
& t=\text { time (iss) } \quad y=\text { value of } \\
& P=10000 \quad r=? \quad t=10 \\
& \text { acct. after } \\
& t \text { years } \\
& \begin{aligned}
20000 & =10000 e^{10 r} \quad \longrightarrow r=\frac{1}{10} \ln 2 \simeq 0.0693 \\
2 & =e^{10 r} \\
\ln 2 & =10 r
\end{aligned}
\end{aligned}
$$

2) How long will it take a bacteria culture of 200 mg to grow to $51,200 \mathrm{mg}$ if it doubles every hour?

n	$y=\#$ hours	
0	200	$y=$ bacteria amt (mg)

